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Abstract

We analyse the dynamics of Indonesian waters using the results of a set of 13 time-slice experiments simulated by the
CCSM3-DGVM model. The experiments were carried out to study global climate variability between and within the
Quaternary interglacials of Marine Isotope Stages (MIS) 1, 5, 11, 13, and 15. During boreal summer (June-July-August-
September), in most of Indonesia, seasonal surface temperature anomalies can largely be explained by local insolation
anomalies induced by the astronomical forcing. However, for some time slices, climate feedbacks may modify the surface
temperature response in Indonesia, most pronounced in open water close to the Indian and Pacific Oceans. The warm-
est boreal summer sea-surface temperature (SST) anomaly compared to Pre-Industrial (PI) conditions of up to 1 K
was found in the Banda Sea at 125 ka (MIS 5) and 579 ka (MIS 15). The coolest boreal summer SST anomaly down to
-2 K at 495 ka (MIS 13) is equally distributed in Indonesian waters. During boreal winter, most of the moderate cooling
over large portions of the land and the waters of Indonesia is also associated with local insolation. The most interest-
ing finding in this study, a dipole and tripole precipitation pattern with up to 3.6 mm/day of rainfall anomaly during
boreal summer is identified in the western part of the Indonesian waters, Indian Ocean to Banda Sea, and the eastern
part of Indonesian waters. The results of this study are expected to be used as basic information to predict the climate
in Indonesia for the present and future. This may add to the assessment provided by the IPCC for a better understanding
of future climate change in the region, which is a prerequisite for alleviating its impacts.

Zusammenfassung

Wir analysieren die Dynamik indonesischer Gewasser anhand der Ergebnisse von 13 Zeitscheibenexperimen-
ten, die mit dem CCSM3-DGVM-Modell durchgefiihrt wurden. Die Experimente helfen, globale Klimaschwan-
kungen zwischen und innerhalb der quartdren Interglaziale der Marinen Isotopenstufen (MIS) 1, 5, 11, 13 und
15 zu untersuchen. Wahrend des borealen Sommers (Juni-Juli-August-September) konnen in den meisten Ge-
bieten Indonesiens saisonale Oberflachentemperaturanomalien weitgehend durch lokale Sonneneinstrahlungs-
anomalien erklart werden, die durch den astronomischen Antrieb hervorgerufen werden. Allerdings kénnen
Klimariickwirkungen fiir einige Zeitscheiben die Oberflachentemperaturen in und um Indonesien verandern,
am starksten im offenen Ozean in der Nahe des Indischen und Pazifischen Ozeans. Die warmste Anomalie der
Meeresoberflachentemperatur (SST) im borealen Sommer im Vergleich zu vorindustriellen Bedingungen um bis
zu 1 K wurde in der Banda-See bei 125 ka (MIS 5) und 579 ka (MIS 15) gefunden. Die kiihlste boreale Sommer-
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SST-Anomalie um bis zu -2 K bei 495 ka (MIS 13) ist in indonesischen Gewassern gleichmaflig verteilt. Wahrend
des borealen Winters ist die meist moderate Abkiihlung liber weite Teile des Landes und der Gewasser Indonesi-
ens auch mit der lokalen Sonneneinstrahlung verbunden. Das interessanteste Ergebnis dieser Studie, ein Dipol-
und Tripolniederschlagsmuster mit bis zu 3,6 mm/Tag Niederschlagsanomalie wahrend des borealen Sommers,
wird im westlichen Teil der indonesischen Gewasser, im Indischen Ozean bis zur Banda-See und im 0stlichen Teil
der indonesischen Gewasser identifiziert. Die Ergebnisse dieser Studie sollen als Basisinformationen dienen, um
das Klima in Indonesien fiir die Gegenwart und Zukunft vorherzusagen. Dies kann die vom [PCC vorgelegte Be-
wertung fiir ein besseres Verstandnis des zukiinftigen Klimawandels in der Region ergianzen, als eine wichtige

Voraussetzung fir die Abschwachung seiner negativen Auswirkungen.

Keywords

1. Introduction

Indonesia is located within the Indo-Pacific Warm
Pool (IPWP) which is known as the largest area of
warm sea-surface temperatures (SST) (Niedermayer
et al. 2014; De Deckker 2016; Wurster et al. 2019) with
the highest precipitation on the entire Earth (Nieder-
mayer et al. 2014; Wurster et al. 2019). Thus, the IPWP
plays a major role in the global atmospheric circula-
tion and hydrologic cycle, and the IPWP can be consid-
ered as the largest source of atmospheric water vapor
and latent heat. In Indonesia, marine and terrestrial
ecosystems are strongly dependent on the global and
regional climate evolution. Today, the Australian-In-
donesian monsoon system and the migration of the
Intertropical Convergence Zone (ITCZ) passing Indo-
nesia drive the seasonal cycle of the Indonesian cli-
mate (Wyrtki 1961; Robertson et al. 2011; Kwiatkowski
etal. 2015). Meanwhile, positive climate anomalies
like the Indian Ocean Dipole (10D) (Saji et al. 1999) or/
and El Niflo-Southern Oscillation (ENSO) events (Ras-
musson and Carpenter 1982) have been suggested to
contribute to drier conditions and prolonged dry sea-
sons in Indonesia. Interaction among these recurrent
modes may generate a very complex climatic system
over Indonesia. Along with the strong entanglement
of climate phenomena, their influence varies across
the region today and may have experienced similar
climate features during the past due to, for example,
the topography of Indonesia and ocean-atmosphere
fluxes, which are mainly imposed by SST variability
(Aldrian and Susanto 2003), partly induced by insola-
tion forcing.

Paleoclimate conditions in Indonesia, particularly
during the Holocene, have been studied with proxies
by using lacustrine (Konecky et al. 2013; Russell et al.
2014) and marine sediment cores (e.g. Linsley et al.
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2010; Mohtadi et al. 2011a), corals (Abram et al. 2009),
and speleothem records (e.g. Partin et al. 2007; Grif-
fiths et al. 2009; Griffiths et al. 2010). Proxy records
were collected from marine sediments off Sumatra,
western Indonesia, from the Makassar Strait, cen-
tral Indonesia, and the Java Sea, southern Indonesia
(Partin et al. 2007; Griffiths et al. 2009; Griffiths et al.
2010; Mohtadi et al. 2011a; Tierney et al. 2012; Ayliffe
et al. 2013; Konecky et al. 2013; Dubois et al. 2014; Rus-
sell et al. 2014; Steinke et al. 2014; Kuhnt et al. 2015).
These reconstructions were accomplished for dif-
ferent regions in the Maritime Continent dominated
by large-scale climate phenomena such as ENSO or
the monsoonal system to a different extent as it is
observed today (Aldrian and Susanto 2003). The re-
constructions revealed that the monsoonal system
(Mohtadi et al. 2011b), ENSO and the 10D (Abram et al.
2009; Niedermeyer et al. 2014) may have transformed
over time.

With regard to the pastinterglacials, the present Holo-
cene global climate pattern and its natural near future
is best comparable with Marine Isotope Stage (MIS)
19 at ~790-760 ka (Lisiecki and Raymo 2005) based on
variations in both annual and seasonal temperatures;
the MIS 11 (~424-373 ka) climate pattern is close to
the Holocene climate pattern when the impact of inso-
lation alone is considered, and warm climates in MIS 5
(~130-70 ka) and MIS 9 (~337-299 ka) make the clos-
est analogues to the future human-induced warm cli-
mate (Yin and Berger 2015). This insolation-induced
climate pattern may occur again in the future, result-
ing in a similar climate pattern as was observed in the
past. Hence, investigating the mechanisms that have
been essential in the past may help in understanding
the future (Doe 1983; Hay et al. 1997). However, an-
thropogenic influence, as observed today, may modify
the climatic pattern on Earth also in the future, in
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particular in Indonesia. Facing global climate change,
the average temperature changes are projected to
rise by 3°C in Indonesia by 2100 relative to the aver-
age temperature of 1990; sea level height may rise up
to 140 cm by 2080 (BAPPENAS 2011). Hence, future
environmental changes may lead to intensified mon-
soonal precipitation (Jourdain etal. 2013; Pachauri
et al. 2014), shifted El Nifio conditions (Collins 2005),
and altered agricultural activities in Indonesia (Nay-
lor et al. 2007) which will result in a hampered food
security and nutrients supply to local people.

Effects of environmental changes can be determined
by using climate simulations. Thus, climate models
are of pivotal importance to simulate future climate
scenarios and to identify dynamics and forcing mech-
anisms of climate phenomena in response to orbital
forcing and greenhouse gases (GHG) in order to un-
derstand how climatic phenomena are interconnected
in the past, present, and future. Moreover, neither one
of interglacial climate simulations focusing on Indo-
nesia have been performed in previous studies using
Earth system models of intermediate complexity or
fully coupled atmosphere-ocean general circulation
models. In addition, earlier interglacial periods have
attained much less attention by climate modellers.

The aim of this study is to investigate the climate
evolution in Indonesia on long time-scales from 615
ka to present related to orbital forcing and GHG con-
centrations by using the Community Climate System
Model version 3 (CCSM3) including a dynamic global
vegetation model (DGVM) following the previous
work of Rachmayani et al. (2016). The results of our
study are expected to be useful as basic information
to understand the climate, especially in Indonesia for
the present and future. Moreover, this research indi-
rectly plays arole in alleviating the impacts of climate
change (disaster mitigation) which is in line with
the goals of the Intergovernmental Panel on Climate
Change (IPCC).

2. Experimental setup
2.1 Model

To investigate the Indonesian climate dynamics, we
conducted low-resolution T31 version (Yeager et al.
2006) simulations with the CCSM3 coupled general
circulation model (CGCM) comprised of four compo-
nents representing (1) atmosphere, (2) ocean, (3) sea
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ice,and (4) land surface (Collins et al. 2006). In this T31
version, the horizontal resolution of the atmosphere
and land components is 3.75° with 26 vertical layers
in the atmosphere. The ocean grid consists of 25 lev-
els in the vertical and nominal horizontal resolution
of 3°. Improvements of land hydrology parameteriza-
tions (Oleson et al. 2008) were carried out as in previ-
ous studies (e.g. Rachmayani et al. 2015; Rachmayani
et al. 2016). The land model consists of components
for biogeophysics, biogeochemistry, the hydrological
cycle and a DGVM based on the Lund-Potsdam-Jena
(LPJ) model (Sitch et al. 2003; Levis et al. 2004; Bonan
and Levis 2006).

2.2 Experimental setup

A control simulation of standard Pre-industria (PI)
was performed following PMIP (Paleoclimate Model-
ling Intercomparison Project) guidelines with regard
to the forcing (see e.g. Braconnot et al. 2007). The as-
tronomical parameters of Pl in 1950 AD, atmospheric
trace gas concentrations from the 18t century (Table 1)
as well as PI distributions of atmospheric ozone,
sulfate aerosols, and carbonaceous aerosols (Otto-
Bliesner et al. 2006) were considered along with the
solar constant set to 1365 Wm™2. To begin the simula-
tion, 1000 years of the PI control run were integrated
starting from modern initial conditions, except for the
vegetation which started from bare soil. Branching
off from year 600 of the PI spin-up run, 13 intergla-
cial time-slice experiments were executed, each run-
ning for 400 years. Table 1 comprises the appointed
time slices according to the astronomical parameters
(Berger 1978) and GHG concentrations, whereas ice-
sheet configuration, ozone distribution, sulfate aero-
sols, carbonaceous aerosols, and solar constant were
prescribed as in the PI control run. Here, we used the
mean of the last 100 simulation years of every experi-
ment for analysis. The selection of interglacial time
slices was discussed in Rachmayani et al. (2016). The
time slices were categorized into three groups ac-
cording to the insolation patterns which diverge in
their seasonal distribution of incoming energy (Rach-
mayani et al. 2016). Group I is composed of 6 and 9 ka
(MIS 1), 125 ka (MIS 5), 405 and 416 ka (MIS 11), 504
ka (MIS 13), and 579 ka (MIS 15) time slices which re-
flected high northern hemisphere summer insolation
anomaly. Group II consists of dates 115 ka (MIS 5),
495 and 516 ka (MIS 13), and 609 ka (MIS 15) which
showed anomalies with low boreal summer insola-
tion. Group III includes dates 394 and 615 ka, which
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are characterized by changes in the sign of the north-
ern hemisphere insolation anomalies from spring to
summer (Rachmayani et al. 2016).

Table 1 Atmospheric greenhouse gas (GHG) concentration
used in the interglacial experiments. Source: Rach-
mayani et al. (2016)

Group Stage |Time slice | CO, CH, N,0
classification* (ka) |(ppmv)| (ppbv) | (ppbv)
Controlrun | MIS1 0 280 760 270
I 6 280 650 | 270
I 9 265 680 | 260
11 MIS 5 115 273 472 251
I 125 276 640 | 263
I11 MIS 11 394 275 550 | 275
I 405 280 660 | 285
I 416 275 620 | 270
11 MIS 13 495 240 487 | 249
I 504 240 525 | 278
11 516 250 500 | 285
I MIS 15 579 252 618 266
11 609 259 583 | 274
I11 615 253 617 274

* Group I:

High northern hemisphere summer insolation anomaly
Group II:

Low northern hemisphere summer insolation anomaly

Group III: Changes in the sign of the northern hemisphere
spring to summer insolation anomaly

CCSM3 simulations were performed on the SGI Al-
tix supercomputer of the Norddeutscher Verbund
fir Hoch- und Hochstleistungsrechnen (HLRN),
Hannover, Germany, through the Priority Research
Programme INTERDYNAMIC (SPP 1266). The com-
pute node details comprise of 960 eight-core central
processing unit (CPU) sockets sharing 48 GB of ran-
dom access memory (RAM). The total memory used
in Hannover was 45 TB with 7680 internal service
nodes. The computation time to run one single 1000
years paleoclimate simulation by using the T31 low
resolution of CCSM3-DVGM was ~5-6 days.
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3. Results and discussion
3.1 Surface temperature

Figure 1 displays surface temperature anomalies dur-
ing boreal summer (June-July-August-September) in
Indonesia for each time slice. Rachmayani et al. (2016)
divided the time slices into three groups based on the
insolation (see Section 2.2). As in Rachmayani et al.
(2016), in most of Indonesia, seasonal surface temper-
ature anomalies can largely be interpreted by local in-
solation anomalies induced by the astronomical forc-
ing (not shown; see Fig. 2 in Rachmayani et al. 2016).
However, for some time slices such as at mid-Holocene
(6 ka), at 394 ka and at 615 ka, climate feedbacks may
have modified the surface temperature response in
Indonesia, most pronounced in open waters close to
the Indian Ocean and the Pacific Ocean.

The warmest SST anomaly of up to 1 Kis in the Banda
Sea at 125 ka (MIS 5) and 579 ka (MIS 15) compared
to PI conditions. The coolest SST anomaly of down
to -2 K, equally distributed in Indonesian waters, is
captured at 495 ka. During boreal winter (December,
January, February), the local insolation anomaly con-
tributes to the most of moderate cooling over large
portions of land and waters of Indonesia at 6, 9, 125,
394, 405, 416, 504, and 579 ka with maximum cool-
ing at 579 ka of down to -2.5 K, compared to PI (Fig.
2). A warmer winter surface temperature is observed
at 115, 609, and 615 ka with an anomaly of about 0.5
K compared to PI. Meanwhile, surface temperature
anomaly at 516 ka is small compared to PI.

During boreal summer in the Holocene, an abrupt
warming of surface temperature can be associated
with a weakening of the Asian summer monsoon and
a more southerly displaced ITCZ, probably reflecting
negative [0D-like mean states (Abram et al. 2009) in
the Indian Ocean. By contrast, during winter, in line
with Linsley et al. (2010), SST experiences a cooling
during the early Holocene (9 ka) related to seasonal
migration to a more northerly position of the ITCZ
and associated monsoonal precipitation as discussed
in Fan et al. (2013) and a strong Asian summer mon-
soon corresponding to a more positive IOD-like mean
state in the Indian Ocean (Abram et al. 2009). Some
feedback mechanism such as an eastward shift of
the Western Pacific Warm Pool (WPWP) or intensi-
fied ENSO may contribute to the cooling along with
an upward mixing of cold subsurface waters within
the Indonesian waters as suggested by Rosenthal et al.

233



Climate Variability in Indonesia from 615 ka to present: First Insights from Low-Resolution Coupled Model
Simulations

(2013). Here, we hypothesize that a similar phenom-
enon happened at 125, 416, 504, and 579 ka associ-
ated with a stronger change of ITCZ and larger shifted

WPWP.
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Fig.1 Boreal summer (June-September) surface temperature anomalies (relative to Pre-industrial times, PI) for the different in-
terglacial time slices (numbers are given in 1000 yrs). Classification as Groups 1, I1, and 11l according to Table 1 is indicated.
Source: own elaboration
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3.2 Precipitation

Boreal summer (JJAS) precipitation over Indonesia is
presented in Figure 3. It illustrates intensified rainfall
in the northwest and eastern region of Indonesia in
Group I as a response to the high summer insolation
and Group III due to internal feedbacks. It reaches
the maximum rainfall anomaly at about 3.6 mm/day
at 125, 504 and 579 ka compared to PI. This is asso-
ciated with low precession values (Rachmayani et al.
2016). In addition, these two regions experienced a

DIE ERDE - Vol. 150 - 4/2019

As in Figure 1, but for boreal winter (December-February). Note: White area in the panel for 579-PI indicates values below

wet phase as an extension of the monsoon belt from
northern Africa to India, via the Arabian Peninsula as
discussed in Rachmayani et al. (2016). Contrastingly,
the two regions evidence dry conditions in Group II
with low boreal summer insolation due to a preces-
sion maximum (Rachmayani etal. 2016). The most
interesting part in this study, a dipole and tripole
precipitation pattern is captured in the western part
of Indonesian waters, Indian Ocean to Banda Sea and
eastern part of Indonesian waters during boreal sum-
mer.
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As investigated in many studies, the tropical climate
of Indonesia is controlled by the ITCZ and the Austral-
ian-Indonesian monsoon system on a seasonal scale
(Robertson etal. 2011), and ENSO (Dai and Wigley
2000) and 10D (Saji et al. 1999; Webster et al. 1999)
on an interannual scale. The position of the ITCZ
is strongly controlled by insolation (Wanner et al.
2008) and oceanic energy transport (Broccoli et al.
2006), which affects the interhemisphere tempera-
ture contrast (Chiang and Friedman 2012). Moreover,
it is tightly coupled to the large-scale phenomena like
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the monsoonal system (Gadgil 2003; Wang 2009) and
ENSO (Philander 1985). The position of the ITCZ being
located farther south during El Nifio and farther north
during La Nifia (Philander 1985; Schneider et al. 2014).
The intensified rainfall in the northwest region of In-
donesia and eastern part of Indonesia is also associ-
ated with the WPWP. It is characterized by the warm-
est SST (in the Pacific Ocean) and it is known as the
largest heat reservoir on Earth providing water vapor
and latent heat to the atmosphere (Chen etal. 2004;
Cravatte et al. 2009) influencing the tropical climate
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system such as in Indonesia at dates in Group I and
Group III. By contrast in Group II, the shifted WPWP
causes a reduction of rainfall in Indonesia. The mon-
soonal system (wind strength, precipitation intensity
and the onset of the rainy season) over Indonesia is
influenced by interannual climate from the Indian and
Pacific Oceans. Monsoon strength changes and land-
ocean movements of rainfall during the interglacials
are likely affected by the orbital parameters and inso-
lation gradient resulting in changes in the meridional
temperature gradient (e.g. Mohtadi et al. 2016).

4, Conclusions

Since past climate variability in Indonesia is mostly
studied by using proxies, this study is an attempt to
investigate the climate variability in Indonesia by us-
ing the fully coupled CCSM3-DGVM climate model.
Thirteen interglacial time slices of the Indonesia re-
gion were analyzed with respect to climate variabil-
ity between and within Quaternary interglacials. We
focused on the local and regional climate feedbacks
which may modify the climate variability from the ex-
ternal forcing of insolation and GHG concentrations.
The climate feedbacks that play a role in contributing
to the rainfall pattern in Indonesia involve the posi-
tion of the ITCZ, the Australian-Indonesian monsoon-
al system, and the WPWP. Compared to the past inter-
glacials, the present global climate pattern and its near
future has similarities with the MIS 19, MIS 11, MIS 9
and MIS 5 climate patterns. Periodic variations in the
distribution of insolation strongly influenced climatic
patterns on Earth in the past, present and will influ-
ence them in the future. Facing global climate change,
the average temperature is projected to rise by 3°C in
Indonesia by 2100 relative to the average temperature
in 1990, while sea level height may rise up to 140 cm
by 2080. Hence, future environmental changes may
lead to intensified monsoonal precipitation, shifted
El Nifio conditions, and altered agricultural activi-
ties in Indonesia, resulting in hampered food security
and nutrients supply to local people. With increasing
computer power, long-term simulations of interglacial
climates will become more common. Simulations with
a higher spatial resolution of the model will help to
develop a significantly deeper understanding of the
complexity of interglacial climate variability in Indo-
nesia during the past to investigate climate variation
of various regions in Indonesia. In addition, simula-
tions with various GHG concentration trajectories by
using the RCPs (Representative Concentration Path-
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ways) adopted by the IPCC are needed to project the
future climate dynamics in Indonesia.
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