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Zusammenfassung
In Sri Lanka wurde seit der antiken Anuradhapura-Periode (5. Jahrhundert v. Chr. – 11. Jahrhundert n. Chr.) ein 
komplexes System kaskadenartig miteinander in Beziehung stehender Talsperren installiert. Hierdurch konnte 
ebenso wie bei modernen Wassermanagementstrategien die Hochwasser- und Bodenerosionsgefährdung einge-
schränkt und die Wasserqualität kontrolliert werden; durch Wasserspeicherung konnte Bewässerungswasser 
zur Verfügung gestellt werden. Diese Talsperren-Kaskaden waren die zentrale Maßnahme dieser antiken Ein-
zugsgebietsbewirtschaftung; sie  stehen in unmittelbarer Beziehung zur Einführung des Reisanbaus in Sri Lanka. 
Die exemplarisch untersuchten Wewas wurden alle in Tälern angelegt, die bereits vor den Baumaßnahmen durch 
fluviale Akkumulation gekennzeichnet waren. Die sedimentologischen Analysen dieser Talsperren zeigten, dass 
eine zuverlässige Altersdatierung ebenso wie die Rekonstruktion des Sediment- und Wasserhaushaltes schwie
rig ist. Dies ist im Wesentlichen eine Folge der flachen Geometrie der Talsperren, die während der Regenzeit zu 
einer beständigen Umlagerung der Talsperrensedimente durch Wellenbewegung führt. Weiterhin wird während 
der Trockenzeit das Sediment durch Entnahme und landwirtschaftliche Nutzung gestört. Trotz der fehlenden 
Eignung der Wewa-Sedimente für eine hochauflösende Umweltrekonstruktion erlauben die aufgeschlossenen 
Sedimente eine Differenzierung zwischen verwittertem Ausgangsgestein und hangenden fluvialen Sedimenten.
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Abstract
A complex and sustainable watershed management strategy was implemented in Sri Lanka during the ancient 
Anuradhapura period, from the 5th century BC to the 11th century AD. Like modern watershed management 
strategies, it focused on f lood prevention, soil erosion control, water quality control and water storage for ir-
rigation. Tank cascade systems were the key element of these ancient watershed management installations. 
The wewas investigated were constructed in valleys characterised by f luvial accumulation. Sedimentologi-
cal analyses of these tank cascade systems show that a precise age determination and the reconstruction of 
sediment and water f luxes as triggered by human-environment interactions are difficult. This is caused by the 
shallow character of the wewas leading to the steady redeposition of the tank sediments by wave motions dur-
ing the wet season and agricultural use of the desiccated wewas during the dry season. Beyond, the sediments 
analysed allow to distinguish between the weathered parent bedrock and the overlying sediments. A differen-
tiation between wewa deposits and the underlying f luvial deposits remains challenging.
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1. Introduction 

The ancient Ceylonese kingdom with its capital Anu-
radhapura existed in the dry-subhumid north-central 
part of Sri Lanka from the 5th century BC until the 
11th century AD. A growing urban and rural popula-
tion required a well-organised water management 
system, facilitating  water supplies for domestic needs, 
ore processing and other early economic purposes 
as well as irrigation. Already more than 2000 years 
ago, settlers applied techniques to store rainfall and 
surface runoff in reservoirs, locally known as wewas, 
during the wet season to use this water for irrigation 
during the dry season. In the following, the terms 
wewa and tank are used synonymously. Continuously, 
since ancient times these systems have been a major 
measure of floodwater harvesting for the local water 
supply and have enabled an effective flood preven-
tion. At present, more than 10,000 ancient wewas are 
still in use, confirming the high sustainability of these 
watershed management systems (Dahdouh-Guebas et 
al. 2005, Amarasinghe and Nguyen 2010). 

It is assumed that the small tank systems, built by lo-
cal villagers and communities, were the origin of Sri 
Lanka’s wewa systems (Panabokke et al. 2002). This 
paper describes a small wewa system northeast of 
Anuradhapura as a case study on the functionality 
of these measures of water harvesting and flood pre-
vention. As information on the sediment character 
of these small reservoirs is sparse, some overview-
ing sedimentological investigations were conducted. 
In order to evaluate whether the deposits of minor 
wewas are suitable as archives for the reconstruction 
of regional human-environmental interaction and 
the reconstruction of the wewa history, undisturbed 
sediments from the wewas were investigated.

2.	 Natural character and settlement history of the 
Sri Lankan North Central Province

2.1  Location and natural character

The city of Anuradhapura is located in the north-
central part of Sri Lanka (8°21’ N, 80°23’ E; 89 m asl), 
in the present-day Sri Lankan North Central Province. 
Local climate corresponds to an As climate accord-
ing to the Köppen-Geiger classification (Kottek et al. 
2006). Annual evaporation totals 1,290 mm and thus 
exceeds average annual rainfall, leading to water 
stress during the year (Panabokke et al. 2002); water 

shortages predominantly occur during the dry pe-
riod from June to August. The rainfall pattern in Sri 
Lanka is generally determined by the topography and 
by two monsoonal periods. The central highlands of 
Sri Lanka build an orographic barrier for the south-
west monsoon (May-September) bringing rainfall to 
the southwestern part of the island and to the wind-
wardfacing parts of the highland. The northeast mon-
soon (December-February) provides the northeast-
exposed slopes of the highlands and the eastern parts 
of Sri Lanka with precipitation. Due to the location 
in the north-central part of Sri Lanka the spatial and 
temporal rainfall pattern in the study area does not 
show a strong connection to the monsoonal periods. 
Rainfall occurs mainly in the intermonsoonal peri-
ods during the short rainy season from March to May 
and a main rainy season from October to November 
(Domrös and Ranatunge 1993). At Anuradhapura 
weather station, the annual average temperature for 
the period of 1960-1990 is 27.1°C, and annual rainfall 
averages 1198 mm (FAOCLIM 2001).

Geologically the area is almost completely built of 
Precambrian crystalline rocks, mainly consisting of 
granitic gneisses and quartzites (Sri Lanka Survey 
Department 1988). In the metamorphic rock region of 
the Anuradhapura area, the groundwater is stored in 
two different rock zones, namely the weathered rock 
zone (regolith) and the deeper zone of the unweath-
ered basement. Whereas the regolith aquifer is shal-
low and usually located at 2-10 m depth, the ground-
water of the deep fracture zone is found at various 
depths of more than 30 m (Panabokke and Perera 
2005). The potential natural vegetation in the north-
central region is characterised by moist deciduous 
forest. However, as Sri Lanka has already been set-
tled for a long time, potential natural vegetation can 
be found only in the national parks, while rice is the 
main crop cultivated in the north-central part of the 
country. Locally, chena agriculture is widespread and 
is traditionally practised as shifting cultivation.

2.2  Settlement history

From 437 BC to 1017 AD, Anuradhapura was the capi-
tal of the Kingdom of Anuradhapura, which governed 
most of Sri Lanka (Dahdouh-Guebas et al. 2005). The 
Anuradhapura Kingdom is considered to be the first 
centralised empire in South Asia. Today, the Anurad-
hapura archaeological site, comprising 40 km2, is one 
of the largest archaeological sites known (Coningham 
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et al. 2007, Kohlmeyer 2010). Nowadays, Anuradhapura 
is listed as a UNESCO world heritage site and is cur-
rently the capital of the North Central Province.
 
The settlement history of Sri Lanka goes back to the 
Mesolithic, when the Balangoda Culture inhabited the 
island from 48 000 to 26 000 BC (Deraniyagala 1972). 
During the Early Iron Age (900 to 600 BC) a village-
based agricultural and pastoral society developed, 
also involving household craft production, and the use 
of mineral resources became common. Findings from 
protohistoric sites indicate that animals had already 
been domesticated. In the hinterland of Anuradha
pura, the settlements of that time had a remarkable 
ribbon pattern spreading out alongside the river 
banks (Deraniyagala 1972). 

Subsequent to the Iron Age, during the Early Histori-
cal period, settlements in the Anuradhapura area not 
only lined the river banks but were also spread out 
in a cluster pattern which was linked to the location 
of artificial water reservoirs (wewas) as irrigation 
centres. The large-scale irrigation networks formed 
the economic basis for the closely related complex 
settlement patterns of the Early Historical period 
(Deraniyagala 1998). After the 4th century BC, the 
use of natural resources –  for irrigation agriculture 
as well as for processing mineral resources – was in-
tensified throughout the area of Anuradhapura. This 
coincides with a demographic expansion, the devel-
opment of bigger chiefdoms and the establishment 
of a diverse social hierarchy. In the Early Historic 
era, state formation began and social stratification, 
the development of urban centres and long-distance 
trade emerged (Deraniyagala 1998).

3.  The irrigation system of Sri Lanka

3.1  History of the wewa systems

The tank cascade systems of Sri Lanka date back to 
the ancient Anuradhapura period. They constitute 
a sophisticated watershed management structure 
enabling irrigation agriculture to be practised in the 
dry-subhumid regions of Sri Lanka (Mahatantila et al. 
2008). The system is composed of thousands of hu-
man-made reservoirs, locally known as wewas, their 
highest density can be found in the dry zone of Sri 
Lanka, where they facilitated agricultural production 
for more than 2000 years ( Jayatilaka et al. 2003). The 
wewas form a system of floodwater harvesting, water 

storage and water distribution, mainly for the cultiva-
tion of rice ( Jayatilaka et al. 2003).

According to the size of the reservoirs and their com-
mand areas, they can be classified as major, medium, 
minor and micro irrigation works. Major wewas are 
defined as tanks with reservoir surface areas larger 
than 50 ha and command areas exceeding 80 ha. By 
contrast, the village tanks are much smaller, and their 
corresponding command areas are also significantly 
smaller; therefore they belong to the class of minor or 
micro irrigation works (Murray 2004). The wewas are 
located cascade-like along the valley courses and are 
connected by canals and spillways. 

Written sources such as the Mahavasma, the chronicle 
of Sri Lanka, give evidence that the larger wewa sys-
tems were constructed and directed by various kings 
from 300 BC onwards ( Jayasena and Selker 2004, 
Panabokke et al. 2002). The Bassawakkulama tank in 
Anuradhapura (107 ha reservoir surface) was built 
around 300 BC and is assumed to be the earliest large 
irrigation reservoir (Brohier 1934). All other ancient 
major irrigation works in Sri Lanka were most likely 
constructed later, namely in the period from 300 BC to 
1200 AD (Chandrajith et al. 2008). During the historical 
period of Anuradhapura, the number of wewa systems 
steadily grew, reaching its peak in the period between 
the 8th and the 10th century AD in the hinterland of Anu
radhapura. In 993 AD Anuradhapura was destroyed by 
conquerors from South India (Domrös 1976) and the 
wewa cascade systems fell into disuse (Gilliland et al. 
2013). These conquerors founded a new capitel 80 km 
southeast in Polonnaruwa. Here King Parakramabahu, 
who reigned in the 12th century AD, was famous for his 
tank-building activities. It is documented that he had 
built around 2500 major and minor tanks as well as 
more than 4000 canals (Kenyon et al. 2006). The con-
struction and service of the large wewa systems was 
carried out by a small number of professional engi-
neers and administrators (Kenyon et al. 2006).

By contrast, the thousands of small village tank sys-
tems were designed and built by little village com-
munities (Panabokke et al. 2002). Due to a lack of 
historical records it is still unclear when the con-
struction of these small irrigation systems began. It 
is widely assumed that the construction of the vil-
lage wewa systems developed out of the operation of 
rain-fed agriculture (Amarasinghe and Nguyen 2010, 
Panabokke 2010). Dahdouh-Guebas et al. (2005) es-
timate that more than 30,000 human-made tanks 
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were built all over Sri Lanka in historical times. Two 
thirds of these were village wewa systems (Zubair 
2005). At present, more than 10,000 wewas are still 
in use (Dahdouh-Guebas et al. 2005, Amarasinghe and 
Nguyen 2010), belonging to approximately 3,500 tank 
cascade systems (Murray 2004). In the north-central 
region of Sri Lanka, especially after the 13th century 
AD, numerous major wewa systems fell into disrepair 
and were abandoned because of wars and epidemics 
(Zubair 2005). Under the British colonial administra-
tion in the 19th century, several of the major ancient ir-
rigation works were restored. After World War I, res-
toration programmes also included numerous small 
village wewa systems, resulting in a “stabilisation of 
the small tank irrigated agriculture’’ within the dry 
zone of Sri Lanka (Panabokke et al. 2002). 

3.2	Distribution of tanks and design of tank cascade 
systems

The spatial distribution of wewas is highly variable 
all over Sri Lanka and reaches the highest densities – 
with up to one tank per 1.2 km2 – in the North Western 
Province and the North Central Province (Panabokke 
et al. 2002). Ninety percent of these wewas are inte-
gral parts of tank cascade systems (Fig. 1), where sur-
face runoff is stored along a valley course. Each wewa 
cascade consists of up to 30 reservoirs of varying size; 
in general, reservoir size increases downstream ( Jay-
atilaka et al. 2003). The village wewa systems are im-

pounded by earth dams that are constructed across the 
stream channels in order to collect runoff (Groenfeldt 
2004). Wewa systems of neighbouring valleys can be 
linked by channels. The stored water is distributed to 
the downstream paddy fields via sluices (Mahatantila et 
al. 2008, Chandrajith et al. 2008), and overabundant wa-
ter is conducted via spillways to the linked downstream 
wewa, preventing water loss (Itakura 1995).

A tank system comprises the dam (bund), the tank 
body (wewa) and the upper periphery (thaulla) as ma-
jor elements (Fig. 2; Mahatantila et al. 2008, Chandra-
jith et al. 2008). The thaulla is an artificial wetland 
area of aquatic plants through which the upstream 
drainage water from the paddy fields has to pass  to 
reduce pollutants (Chandrajith et al. 2008). Fines de-
posited in the thaulla are used for pottery; tall grasses 
and softwood from this area are used for crafts ( Jaya-
sena and Selker 2004). The tank water is used for ir-
rigation purposes, domestic needs and livestock keep-
ing (Mahatantila et al. 2008, Murray 2004). A typical 
village wewa cascade system is linked to a village 
that is responsible for its management and is gener-
ally situated in a flood-safe location next to one of the 
wewas. Downstream of most of the dams paddy fields 
are situated. Artifical swamp areas are constructed 
between dam and paddy fields for sewage treatment, 
mostly in the vicinity to villages. Beside the typical 
village wewas, there are several other types of we-

Fig. 1	 Sketch of a typical village wewa cascade system (modi
fied after Panabokke et al. 2002) Fig. 2	 Sketch of a typical village tank ecosystem corresponding 

to a micro-catchment as shown in Fig. 1 (modified after 
Amarasinghe and Nguyen 2010; Mahatantila et al. 2008)
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was: forest tanks, which are mainly built in the jungle 
and provide the wild animals with drinking water, or 
erosion control tanks functioning as siltation basins 
before runoff reaches the main tank (Goldsmith and 
Hildyard 1984, Zubair 2005).

3.3	 Investigations on the wewas’ sedimentary 
environments

There are few studies available investigating the sedi-
ments within the wewa cascade system. These studies 
were conducted to understand the ecosystem of a wewa 
cascade system and to develop pollution management 
plans, some investigations have explored the geo- and 
hydrochemistry of these systems, mainly to evaluate 
catchment weathering (Chandrajith et al. 2008), water 
quality (Mahatantila et al. 2008) and pollution due to 
the use of agrochemicals (Mahatantila et al. 2008, Chan-
drajith et al. 2008). In general, the investigated tank 
sediments were proved to be unpolluted even though 
extensive rice cultivation was observed within the 
catchment (Chandrajith et al. 2008). The investigation of 
wewa sediments with the intention to reconstruct the 
palaeoenvironmental history is rare (Riether 1991).

4.  Methods

4.1  Data processing and field work

Topographic maps at a scale of 1:50,000 (sheets: 25; 26; 
30; 31) published by the Sri Lanka Survey Department 
(2003) were incorporated to support fieldwork and 
assist mapping in a GIS environment (Arc GIS 9.3 by 
ESRI). A digital elevation model (SRTM 3 90 m * 90 m 
pixel size) was used to delineate the catchment of the 
Aruvi Aru river and its sub-catchments.

The field campaign took place in March 2010. To ob-
tain age models of the tank sediments and palaeoen-
vironmental proxies, tubed sediments were extracted 
within the Rota Wewa tank cascade system using a 
percussion driller. Altogether, five sediment cores 
were extracted from four different tanks (Tab. 1, 
Fig.  4); results presented here refer to the sediment 
sequences RW01, RW03 and RW05. Hydrological and 
infrastructural features such as thaulla areas, spill-
ways and sluices were systematically recorded by 
field mapping and GPS application (Garmin 60Cx). 
During the field campaign the wewas of the Rota 
Wewa cascade system were dry.

4.2  Sediment analysis

Sediment analysis was performed at the Physical Geo
graphy laboratory, Department of Earth Sciences, FU 
Berlin. The lithostratigraphy of all sediment sequences 
was described. Magnetic susceptibility measurements 
were performed before sampling by using the core 
scanning sensor type MS2C of a Bartington System with 
horizontal logging. The cores were passed through the 
sensor in half-sections, and measurements were taken 
at 4 cm intervals. The calculated ratio of volume sus-
ceptibility (κ) is dimensionless and was measured in SI 
units. A calibration check was provided by using a cali-
bration sample. The drift of the sensor was evaluated 
by measurements of air before and after each core.

Due to the homogeneous nature of the sediments, 
caused by wave motions in the shallow water of the 
tanks and disturb laminations and event layers, sam-
pling was done at 10-20 cm intervals, extracting 2 cm 
thick bulk samples. Sediment samples were reduced 
to fines < 2 mm Ø. After air drying, half of each sam-
ple was homogenised with an agate disc swing mill for 
further mineralogical and chemical analysis.

4.3  Texture

A Beckman-Coulter LS 13320 PIDS laser diffraction par-
ticle size analyser was used for determining the grain-
size distributions of selected samples. The analysis was 
carried out at the laboratories of the Leibniz Institute for 
Applied Geophysics (LIAG) in Hanover. Grain-size distri-
butions are shown in vol.-%. Due to the small contents of 
organic matter in the sediments (mean = 0.27 mass-%) 
organic material was not removed from samples prior to 
the measurements (cf. Beuselinck et al. 1998, Machalett 
et al. 2008). Carbonate contents were also negligible and 
were therefore not removed before analysis. The grain-
size distribution displayed shows the clay, silt and sand 
distribution with the clay fraction comprising grain 
sizes < 5.5  µm. As lamination and event layers do not 
occur in the wewa sediments analysed, this procedure 
proves to be sufficient to identify the boundary between 
the in-situ weathered bedrock and the overlying alloch-
thonous river and reservoir deposits.

4.4  Bulk parameters

The electrical conductivity of the water-saturated 
sediments was measured with the DIST 3 (HANNA) 
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conductometer in a suspension of 5 g of dried sedi-
ments and 12.5 ml of distilled water after a 30 min re-
action time. The total and inorganic carbon contents 
were determined using a carbon analyser (Woesthoff 
Carmhograph). The total carbon contents (TC mass-%) 
were determined by dry combustion of 0.1 g of the ho-
mogenised sample at 1000°C in an oxygen atmosphere 
and subsequent quantification of the evolved CO2 in 
20 ml 0.05 N NaOH solution by conductivity (Woesthoff 
Carmhograph 16). For the analysis of the total inor-
ganic carbon content (TIC mass-%), CO2 was evolved 
during acid (H3PO4) treatment of 0.1 g of homogenised 
sediment and quantified by a similar conductometric 
method to that used for the TC content. The total or-
ganic carbon content (TOC mass-%) was calculated by 
subtraction of TIC from TC. Calcite (CaCO3) was used 
as the calibration standard for TC (12.01 ± 0.15 %; RSD 
< 2 %) and TIC (12.01 ± 0.38 %; RSD < 4 %) analyses.

4.5  Chemical analysis

Samples were analysed for the major element concen-
trations of S, Mn and Fe using an inductively coupled 

plasma optical emission spectrometer (ICP-OES Per-
kin Elmer Optima 2100DV). Dilutions of 1.0 g of dry 
homogenised sediment were produced with a nitro-
hydrochloric acid (aqua regia) dilution according 
to DIN EN 13346 (2001) and with hydrochloric acid 
(25 ml of 3 % HCl). For data quality control a certified 
reference material (LGC6156; Portsmouth harbour 
sediment < 200 μm), duplicate dilutions, and blank 
reagents were used (Schütt et al. 2010).

4.6  Mineralogical analysis

Mineralogical analysis was exemplarily applied to the 
sediments of core RW03 to gain information on the 
mineralogical composition of the sediments. Powder 
samples were analysed by X-ray diffraction (PW 1710, 
Philips) using a copper kα-tube from 3-70°2θ with steps 
of 0.02°2θ, each step being measured for two seconds. 
Contents of mineral components were quantitatively 
derived from diffraction intensity and the area framed 
by the peak using Philips X’Pert HighScore software. 
Accuracies of measurement and detection limits are 
specific to minerals. Accuracy of measurement aver-

Characterisation of the Rota Wewa tank cascade system in the vicinity of Anuradhapura, Sri Lanka

Tab. 1   Average sediment characters of the stratigraphical units of sediments extracted at RW 01
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ages 0.05°2θ for quartz. The detection limit depends on 
the location of the major diffraction peak d100, sample 
preparation and quality of grinding stock (particle size) 
as well as on instrument settings (Schütt et al. 2010).

4.7  Dating

The chronological frame of the tank sediments was set up 
by AMS radiocarbon dating of six samples. Analyses were 
carried out at the Radiocarbon Laboratory in Poznan, 
Poland. Sample preparation included manual removing 
of recent rootlets. The radiocarbon ages were calibrated 

using the software OxCal (v. 4.1) and the IntCal09 calibra-
tion curve by Reimer et al. (2009). The radiocarbon ages 
were calibrated to weighted calendar years and their 
range, and are reported as calibrated years BC (Tab. 1). 

4.8  Data Analysis

Referring to Schütt (e.g., Schütt 1998a, 1998b, 2004a, 
2004b; Schütt et al. 2010; Schwanghart et al. 2008; 
Schwanghart et al. 2009) data analysis was conducted 
for homogeneous sediment units, set on the basis of 
the lithostratigraphical description and the run of the 
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Tab. 2   Samples and core data for 14C chronology of the Rota Wewa system (P.-o.m.-b.s. = Plants – organic material – bulk sediment)

Fig. 3	 Digital elevation model and drainage network of Sri Lanka and the location of the Aruvi Aru river basin (1); the location 
of Anuradhapura and the Mahakandara catchment (2) within the Aruvi Aru basin; a detailed sketch of the Mahakandara 
catchment (3). (Data base: SRTM 3)



58 DIE ERDE · Vol. 144 · 1/2013

respective sediment parameters (bulk parameters, 
chemical parameters, mineralogical parameters, tex-
ture). Each unit is characterised by mean and standard 
deviation (SD), single values were only regarded where 
minimum or maximum outliers occurred. This method 
has proven to be suitable for non-laminated sediments 
where event layers are also missing, as it is typical for 
shallow lake systems to which the wewas also belong 
(see comprehensive description in Schütt 2004b).

5.  The Rota Wewa tank system

The Rota Wewa is a village tank system about 30 km 
east of Anuradhapura; it is part of a sub-catchment of 
the Mahakandara reservoir, located in the catchment 
of the river Aruvi Aru (Fig. 3). This major-scale tank is 
supplied by several wewa cascade systems, altogether 
consisting of around 100 small tanks. The Rota Wewa 
cascade system is located in the upper reaches of a 
small cascade in the northwest of the Mahakandara 
reservoir, composed of four tanks with a total drain-
age basin area of 2.9 km2, approximately 12 % of which 
is covered by the reservoirs themselves (tank surface 
area). All the investigated tanks are shallow with maxi-
mum water levels of c. 2 m and thus dry up periodically.

With an average slope of about 0.9°, the relief of the Rota 
Wewa cascade drainage basin is plane, with very flat 
valleys and shallow divides. The four tanks of the Rota 

Wewa cascade (Fig. 4) system are joined by spillways 
and sluices. Whereas Tanks 1 and 3 are fed only by run-
off from their own micro-catchment, Tanks 2 and 4 are 
fed from their tributary micro-catchment and receive 
surplus runoff from the upstream tanks. With a surface 
area of 0.15 km² (15.1 ha), the Rota Wewa tank (Tank 1) 
is the largest of the system. Tank 4 covers 6.5 ha, while 
Tanks 2 and 3 have sizes of only 1.2 ha and 2 ha, re-
spectively. Rice is the dominant crop cultivated within 
this Rota Wewa cascade system. The paddy fields are 
located downstream of each tank. 

To improve water quality a wetland is located directly 
downstream of the footslope of Tank 1. While the in-
flow is controlled by the sluices, the wetland serves as 
an area for silting of detritals to improve water qual-
ity before the water is passed on to the paddy fields. A 
hand-dug well is located near the second tank.

The tanks of the Rota Wewa system are managed and 
operated by the villagers. They denominate a person re-
sponsible for the processes necessary to maintain and 
run the tanks. In the case of the Rota Wewa tank cas-
cade system this stewardship and the knowledge asso-
ciated with it has been handed down within a family for 
several generations. An interview with the acting stew-
ard made clear that next to the land use of the wewa 
system, as apparent from the field situation, sediments 
were mined during the dry season from the headwater 
tanks for brick production and for fertilisation.

Characterisation of the Rota Wewa tank cascade system in the vicinity of Anuradhapura, Sri Lanka

Fig. 4	 Detailed sketch of the 
Rota Wewa tank cascade 
system (digitised on 
Google Earth satellite 
imagery) 
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6.	 Sediments extracted from the Rota Wewa tank 
system

6.1  RW 01

Close to the thaulla area of Tank 1, a percussion 
drilling was submerged, and 255 cm of undisturbed 
sediments were extracted (RW 01). Sediments are 
unstratified, of a reddish to yellowish colour and per-
meated by sesquioxide concretions occurring in dif-
ferent sizes and with varying frequency. Calcareous 
features in form of concretions, coatings and finely 
distributed powder are found along the core sequenc-
es. Corresponding to their macroscopic characters, 
the sediments of RW 01 can be subdivided into five 
stratigraphical units (Fig. 5):

[0-4 cm depth]: litter, undecomposed plant remains

Unit I [4-20 cm depth]: sandy clay; dark yellowish brown 
(10 YR 3/6); densely rooted (hair roots); multiple ses-
quioxide oxidation marks; moist; highly compacted

Unit II [20-35 cm depth]: sandy clay; dark brown (10 YR 
3/3); densely rooted (hair roots); multiple sesquoxide 

oxidation marks (distinctly less than in Unit I); scat-
tered sesquioxide concretions (spherical, Ø 0.3 cm); 
moist; highly compacted

Unit III [35-185 cm depth]: sandy clay; very dark grey 
(10 YR 3/1); scattered hair roots; scattered white 
calcareous detritus (up to Ø 3 cm); scattered sesqui-
oxide concretions (spherical, Ø 0.3 cm); moist; highly 
compacted; locally occurring sesquioxide oxidation 
marks; scattered white calcareous precipitations 
(powdered, Ø < 4 cm); scattered quartz detritals; 
moist with decreasing moisture from top to bottom; 
highly compacted

Unit IV [185-252 cm depth]: sandy silt with increasing 
sand content from top to bottom; olive brown (10 YR 
4/3), from top to bottom slightly changing to a light 
olive brown (10 YR 5/3) 

Unit V [253-255 cm]: ditto IV, high density of finely dis-
persed sesquioxide precipitations (Ø < 0.2 cm)

Composition and chemical sediment characteris-
tics: The sediment texture is dominated by clay with 
contents ranging between 14.2 vol.-% and 66.9 vol.-% 
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Fig. 5	 Sediment sequence 
extracted from RW 
01: Lithostratigra-
phy, grain size com-
position (GS), elec-
trical conductivity 
(µS; EC); inorganic 
and organic carbon 
(mass-%; TIC , TOC); 
sulphur (µg*g-1; S); 
magnetic suscepti-
bility (SI; MS). Points 
indicate measured 
values; lines are 
drawn with spline 
smoothing.
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(mean: 44.5 vol.-%, std. = 15.34, n=24). While clay dom-
inates from Unit III down to 150 cm depth, it continu-
ously decreases from 150 cm depth down to the base 
(Fig. 5, Tab. 1). With decreasing clay contents, silt and 
sand contents increase. The silt-clay ratio averages 0.84 
(std. = 0.54, n = 24), showing significantly lower values 
in Units I-III (mean = 0.52-0.72 vol.-%, n = 1-14) than in 
Unit IV (mean = 1.55 vol.-%, std. 0.50, n = 7) (α < 0.01). 
Sand contents are of high variability ranging between 
5.5 vol.-% at the top and 55.0 vol.-% at the base and in-
creasing continuously from top to bottom (Tab. 1).

The electrical conductivity values of the sediment 
saturation extract decreases constantly from top to 
bottom, reaching values of 1290 µS close to the surface 
and dropping to 70 µS at the base. The total carbon con-
tents of the sediment sequence are generally low, rang-
ing between 0.07 % and 0.63 % (mean = 0.39  mass-%, 
std. = 0.16, n = 25; Tab. 1). Also the organic carbon con-
tents of the sediments continuously decrease from top 
to bottom, totalling 0.63 mass-% close to the surface 
(Unit I) and dropping to 0.01 mass-% in Unit V. Inor-
ganic carbon contents average 0.15 mass-% (std. = 0.13, 

n = 25) throughout the sequence, undergoing strong 
oscillations; the total inorganic carbon contents peak 
at 50 cm depth, 80 cm depth and 225 cm depth, reach-
ing maximum values of 0.59 mass-% in core section IV. 
Also the sediment’s sulphur contents are highly varia-
ble, ranging from 10 to 420 µg*g-1 (mean = 100 µg*g-1, 
std. = 100, n = 25) showing local peaks parallel to the 
peaks of the inorganic carbon content and reach-
ing maximum values in the uppermost core sections 
(Units I–III). The Fe-Mn ratios reach their highest val-
ues in Unit I, being considerably lower in section II and 
increasing gradually from Units III to V (mean = 49.47, 
std. = 17.18, n = 25; cf. Tab. 2). Magnetic susceptibility 
values are generally very low (< 25 SI) but suddenly in-
crease in Unit V, reaching values of up to 300 SI.

To set up a chronological frame of the sediments ex-
tracted in RW 01, two samples of bulk organic material 
were analysed to determine their radiocarbon ages 
(Tab. 2). The radiocarbon dates (AMS) show ages of 
8095 ± 63 cal yr BP at 199 cm depth and 3398 ± 34 cal 
yr BC at 91 cm depth, indicating a Holocene chronol-
ogy of the sediment sequence. 

Characterisation of the Rota Wewa tank cascade system in the vicinity of Anuradhapura, Sri Lanka

Fig. 6	 Sediment sequence extracted from RW 03: Lithostratigraphy, grain size composition (GS), electrical conductivity (µS; EC); 
inorganic and organic carbon (mass-%; TIC , TOC); sulphur (mg*g-1 S); magnetic susceptibility (SI; MS). Points indicate 
measured values; lines are drawn with spline smoothing. For figure legend see Fig. 5
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6.2  RW 03

In the central part of Tank 2, approximately 80 m be-
hind the dam, a percussion drilling extracted 225 cm 
of undisturbed sediments. These sediments are non-
stratified, of a brownish colour, and permeated by 
sesquioxide concretions varying in size and concen-
tration. Calcareous features in form of concretions, 
coatings and finely distributed powder are found 
along the core sequences. 

Corresponding to their macroscopic characters, the 
sediments are subdivided into seven stratigraphical 
units (Fig. 6):

[0-4 cm]: litter, undecomposed plant remains

Unit I [4-21 cm]: sandy loam; dark brown (7.5 YR 4/6); 
weakly rooted (hair roots), strong sesquioxide oxida-
tion marks; dry; highly compacted

Unit II [21-45 cm]: sandy-clayey loam; dark brown 
(10  YR 3/3); moderately rooted (hair roots); moist; 

highly compacted; mottled sesquioxide oxidation 
marks; scattered sesquioxide concretions Ø < 2 mm 

Unit III [45-110 cm]: sandy-clayey loam; very dark 
greyish brown (10 YR 3/2) to dark yellowish brown 
(10 YR 4/4); moderately to weakly rooted (hair roots); 
moist; highly compacted; scattered sesquioxide con-
cretions (up to 3-4 mm Ø); isolated calcareous concre-
tions (powdered, up to 1 cm Ø)

Unit IV [110-128 cm]: sandy clayey loam; dark grey-
ish brown (10 YR 4/2); not rooted, moist, moderately 
compacted, sesquioxide oxidation marks

Unit V [128-146 cm]: decomposed calcareous detrital 
(brownish grey; 10 YR 6/2) appearing in its original struc-
ture and embedded in a matrix of sandy loam (dark greyish 
brown; 10 YR 4/2); not rooted; moist; highly compacted

Unit VI [146-185 cm]: sandy to clayey loam; dark grey-
ish brown (10 YR 4/2); not rooted; moist; moderately 
compacted; scattered sesquioxide concretions (Ø < 
1 cm), scattered calcareous concretions (Ø < 0.5 cm)
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Tab. 3   Average sediment characters of the stratigraphical units of sediments extracted at RW 03
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Unit VII [185-225 cm]: sandy; crumbly; yellowish 
brown (10 YR 5/8); not rooted; scattered sesquioxide 
concretions; moist; highly compacted

Composition and chemical sediment characteris-
tics: Sand dominates the extracted sediments with 
contents of 29.30-63.90 vol.-% (mean = 49.27 vol.-%, 
std. = 10.32, n = 17); sand contents decrease from top 
to bottom (Tab. 3). The silt contents vary between 
15.50 vol.-% and 35.80 vol.-%, averaging 23.74 vol.-%  
(std. = 6.60, n = 17). The contents of the clay remain 
below 20.60 vol.-% (mean = 16.99, std. = 4.40, n = 17). 
The silt-clay ratio averages 0.88 (std. = 0.17, n = 17), 
lacking statistically significant differences between 
the different units (α > 0.05).

The mineral composition of the sediments from RW 03 
is dominated by quartz and feldspars with an average 
of 37 vol.-% quartz (std. = 15.7, n = 23) and 57 vol.-% 
feldspar (std. = 14.4, n = 23). Quartz contents are nega-
tively correlated to feldspar contents (r = -0.7, n = 23; 
α < 0.05). Amphiboles occur at 180-225 cm depth with 

contents of up to 15 vol.-%. Calcite frequently occurs in 
Units V and VI, corresponding to the macroscopically 
described calcareous features. The variability of calcite 
contents is high, ranging between 2 and 50 vol.-%. Clay 
minerals were detected with only very low concentra-
tions along the whole sediment sequence.

The electrical conductivity values of the water-
saturated samples range between 20 µS and 158 µS 
(mean = 87 µS, std. = 44, n = 19), being particularly 
low in the uppermost Units I and II. The total carbon 
contents show a high variability with values ranging 
between 0.0 and 6.89 mass-% (std. = 1.68, n = 23). The 
total organic carbon contents are highest in the sedi-
ments close to the surface (Unit I and Unit II), reaching 
values of 0.6 mass-% TOC; they also peak at 155 cm 
depth, reaching similar concentrations to those in the 
uppermost layers. Total inorganic carbon contents av-
erage 0.73 mass-% (std. = 1.68, n = 22) and reach maxima 
of 6.57 mass-% in Unit V and 3.69 mass-% in Unit VII, 
corresponding to the occurrence of calcite. The sul-
phur contents are generally lower than in core RW 01, 
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Fig. 7	 Sediment sequence extracted from RW 05: Lithostratigraphy, grain size composition (GS); electrical conductivity (µS; EC); 
inorganic and organic carbon (mass-%; TIC, TOC); sulphur (µg*g-1 S); magnetic susceptibility (SI; MS). Points indicate mea-
sured values; lines are drawn with spline smoothing. For figure legend see Fig. 5
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reaching a maximum value of 210 µg*g-1 parallel to 
the total organic carbon peak in Unit VI and showing 
the highest contents in Units I to III (mean = 89 µg*g-1, 
std. = 61, n = 23). The Fe-Mn ratios are highly variable, 
ranging between 28.06 and 103.05 (mean = 57.18, 
std = 23.04, n = 23) reaching their highest values in 
Unit I and lowest values in Unit III. Magnetic suscep-
tibility values are generally low, reaching scattered 
maxima of up to 70 SI in Units III and VII.

The radiocarbon dates (AMS) from two samples of 
organic bulk sediments yield ages of 2985 ± 66 cal a 
BP at a depth of 68 cm and 7098 ± 92 cal a BP at a 
depth of 98 cm, providing a Holocene chronology of 
the sediment sequence.

6.3  RW 05

The sediments extracted in the percussion drilling 
RW 05 originate from the central part of Tank 3, lo-
cated 50 metres upstream of the dam. The profile to-
tals about 200 cm. The extracted sediments are not 

stratified. The basal part shows the highly weathered 
saprolite, superimposed by the wewa’s stillwater 
sediments. The colour is brownish throughout. Cor-
responding to their macroscopic characters, the sedi-
ments are subdivided into five stratigraphical units:

[0-2 cm]: litter, undecomposed plant remains

Unit I [2-26 cm]: sandy; yellowish brown (10YR 5/3); 
weakly rooted (hair roots); dry; highly compacted

Unit II [26-110 cm]: sandy loam; dark greyish brown 
(10 YR 4/2); weakly rooted (hair roots); moist; high-
ly compacted; scattered sesquioxide concretions 
(Ø  2-3  mm); scattered calcareous nodules (up to 
Ø 1 cm; very pale brown, 10 YR 8/2); increasing mois-
ture in the middle of the unit; mottled sesquioxide oxi-
dation marks between 33 and 41 cm depth

Unit III [110-155 cm]: mixed layer of sandy (brown-
ish yellow, 10 YR 6/6) and loamy sediments (greyish 
brown, 10 YR 5/2); crumbly; not rooted; moist; highly 
compacted; scattered carbonate precipitations
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Tab. 4   Average sediment characters of the stratigraphical units of sediments extracted at RW 05
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Unit IV [155-181 cm]: ditto Unit III; but increased inci-
dence of partly weathered quartzite detritals

Unit V [181-200 cm]: ditto Unit III; but scattered sesqui-
oxide concretions (very small)

Grain-size distributions of Units I and II (Fig. 7) do not 
show significant differences. Sediments exposed in 
Units III–V were presumably formed by weathering of 
the parent rock material, corresponding to saprolite.

Composition and chemical sediment characteris-
tics: Analysis of sediment texture focuses on Units 
I and II. In these sediment sequences the sand frac-
tion dominates, reaching contents up to 78.70 vol.-% 
(mean = 70.63 vol.-%, std = 6.61, n = 12), while the 
sand contents in Units I and II increase from top to 
bottom (Tab. 4). The sand contents of Unit III are 
considerably lower than in Units I and II. The silt 
fraction contents average 14.97 vol.-% (std. = 2.91, 
n = 12). The contents of the clay fraction range from 
8.81 vol.-% to 25.60 vol.-%  (mean = 14.40 vol.-%, 
std. = 4.63, n = 12), being particularly low in Unit I 
and increasing from top to bottom. The silt-clay 
ratios average 1.11 (std. = 0.35, n = 12) and are 
significantly higher in Unit I (mean = 1.64, n = 3) 
than in Units II and III (n = 1) (α < 0.05). 

The electrical conductivity values of the moist 
sediment samples are low, ranging from 16 µS to 
478 µS (mean = 228 µS, std. = 172, n = 13), being 
particularly low in Unit I, while the highest values 
are recorded in Unit II (Tab. 4). The total carbon 
contents average 0.23 mass-% (std. = 0.19, n = 21). 
Accordingly, the TOC contents are low, reflected 
by an average of 0.18 mass-% (std. = 0.21, n = 21) 
with decreasing concentrations from top to bottom 
(Tab. 4). Total inorganic carbon contents (TIC) av-
erage 0.04 mass-% (std. = 1.68, n = 22) and reach a 
maximum of 0.28 mass-% in Unit III at a depth of 
151 cm, corresponding to the occurrence of calcite. 
The sulphur contents in the sediments of RW 05 
are significantly lower than those of the sediments 
from RW 01 and RW 03, reaching a maximum value 
of 120 µg*g-1 in Unit I (mean = 36 µg*g-1, std. = 35, 
n = 21). The Fe-Mn ratios show a high variability, 
with values ranging from 37.92 to 138.19 (mean = 
81.97, std. = 32.97, n = 21). The highest Fe-Mn ratios 
are reached in Units II and III. Magnetic susceptibil-
ity values are very low in Units I to III, increasing to 
the base of the extracted sediments and reaching a 
maximum value of 78 SI in Unit IV.

7.  Discussion of the sediment records

7.1  Reliability of the chronology

Radiocarbon dating of lake sediments based on bulk 
samples is associated with several problems. Major 
sources for errors are related to the fact that carbon 
from uncertain origins is used for dating (Grimm et al. 
2009), for instance the “hardwater effect”, describing 
the occurrence of old-carbon reservoirs (e. g. bedrock, 
lignite, coal, carbonaceous shales) (Nambudiri et al. 
1980, Lowe et al. 1988 and Grimm and Jacobson 2004). 
This effect leads to an overestimation of ages. 

The carbonates detected in the sediments from the 
Rota Wewa system correspond to calcites. The con-
cretion-like appearance of the carbonates points to 
their post-sedimentary precipitation along desicca-
tion cracks or roots during the desiccation and simul-
taneous concentration of solutions (Sonnenfeld 1984). 
In Sri Lanka, the occurrence of calcite precipitations 
in the form of concretions is a common morphologi-
cal feature in the soils of the dry zone, as described 
by Panabokke (1959) and Moorman and Panabokke 
(1961). Panabokke (1959) assumes that the soluble 
calcium derives from the soils in the upper regions of 
the valleys and is due to the downward movement of 
water. Once in dissolution, the calcium is transported 
in the lateral subsoil flow and precipitates as calcare-
ous concretions in the poorly drained soils of the less 
elevated areas. As carbonates do not occur in the bed-
rock of the drainage basin, it has to be concluded that 
the calcites found are authigenic or originate from or-
ganisms (shells, bones) (Schütt et al. 2005).

Other sources for errors, which are related to the 
wewa sediment, might lead to an underestimation of 
ages: (1) vertical dislocation of humic acids, (2) fluctu-
ations of the ground water and water table of the we-
was, (3) incomplete removal of recent rootlets/roots 
(4) bioturbation (Premathilake 2009, Possnert 1990).
 
Even taking these sources for errors into account the 
absolute age data provide a rough chronology. How-
ever, the six radiocarbon ages analysed for three sedi-
ment sequences relate plausibly.

7.2  Sediment characters
	
The grain-size compositions of all three sediment 
sequences document the allochthonous origin of the 
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sediments (Dunne et al. 1991, Folk 1966) and foster to 
point out the transition between autochthonous weath-
ered bedrock and allochthonous tank sediments. In the 
sediment sequences of RW 01 and RW 05, the Sl values 
of magnetic susceptibility document the transition 
from the highly weathered bedrock – saprolite devel-
oped in the parent granitic gneisses and quartzites – to 
the overlying sediment units. In RW 03 this transition is 
detectable only macroscopically and is represented by 
loamy sand in which partly weathered quartz detritus 
is embedded, but SI values do not give a clear indication. 

To distinguish between the wewa sediments and the 
fluvial deposits of the valleys in which the wewas were 
built, the radiocarbon ages give valuable information. 
Ages of the sediments from RW 01 and RW 03 clearly 
indicate that large parts of both sequences were al-
ready deposited before the ancient Anuradhapura pe-
riod. Also, the basal sediments exposed in RW 05 were 
deposited before the ancient Anuradhapura period, 
whereas overlying sediments only 30 cm above origi-
nate from the 9th century AD. This indicates that the 
tank system was constructed in a fluvial accumula-
tion zone (Patt et al. 2011), corresponding to the over-
all slightly rolling relief whose small gradients retard 
turbulent runoff and erosion processes (Ahnert 2009).
However, for all three sediment sequences, only one 
radiocarbon age matches the ancient Anuradhapura 
period, at least documenting that historical wewa 
sediments do exist, an observation that is contrary 
to the assumption by Riether (1991). The hiatus of 
younger sediments can most likely be explained by 
the removal of sediments by the local villagers. As in-
terviews with the local population showed, particu-
larly sediments from wewas in the headwater areas 
are removed when the reservoirs have fallen dry and 
are used for construction purposes, either for brick 
production, as packed earth or as a fertiliser alterna-
tive. The removed sediments are predominantly the 
uncompacted, most recent deposits. 

In all three sediment sequences extracted, local in-
creases in the electrical conductivity values of the 
water-saturated samples along the profile trace the 
dry front of the desiccating reservoir (Sonnenfeld 
1984). The high fraction of quartz and silicates in the 
mineralogical composition of the reservoir sediments 
affirms their detrital origin (Schütt 2004b).

In perennial lakes, the decomposition of suspended 
organic matter is predominantly controlled by oxida-
tion, whereas after deposition the decay of organic 

matter is continued by anaerobic bacteria (Meyers and 
Ishiwatari 1993) and can result in the total decompo-
sition of organic matter (Livingstone 1984). Conse-
quently, high decomposition rates can be expected 
in ephemeral or periodical lakes during desiccation. 
Organic carbon contents in the sediments from tanks 
of the Rota Wewa system are very low, and decreasing 
contents of organic carbon from top to bottom sug-
gest a progressively early diagenetic decomposition of 
organic matter (Rheinheimer 1974), which is forced by 
light, high temperatures and oxygen (Vallentyne 1962). 
Locally increased organic carbon contents might cor-
respond to the deposition of larger plant remains and 
soil organic matter as a consequence of flood events 
and concurrent erosion processes in the drainage ba-
sin (Dunne et al. 1991). In general, increased organic 
carbon contents of lacustrine sediments indicate dep-
osition rates higher than decomposition rates such as 
those caused by soil erosion processes (Lerman 1979).

Sesquioxide precipitation in all three sediment se-
quences document oxidising processes during desic-
cation of the wewa systems presented here (Schütt 
2004a). In the three sediment profiles, Fe-Mn ratios 
increase from top to bottom. As Mn in lacustrine 
sediments indicates drainage basin conditions, it is 
often standardised to Fe by means of the Fe-Mn ratio 
(Mackereth 1966, Boyle 2001, Schütt 2004a). While 
Fe  contents are highly correlated to the lithogenous 
Fe  contents, Mn contents are related to soil-forming 
processes during which it can be mobilised more easi-
ly than iron under reducing conditions (Schlichting and 
Schweikle 1980). In consequence it is assumed that in-
creased Fe-Mn ratios document increased input of de-
tritals, whereas decreased Fe-Mn ratios are evidence 
of phases with extended wetland areas in the wewa 
margin. Hence, the inflowing groundwater is enriched 
by dissolved Mn, which is subsequently incorporated 
in the lake sediments (Schwanghart et al. 2008).

Sulphur contents in the analysed sediments are 
mostly close to the detection limit and repeatedly 
show local increases. As the parent bedrock in the 
Rota Wewa drainage basin is granite and gneiss, a 
geogenic origin of the sulphur contents in the res-
ervoir sediments is excluded. Since peaks in sulphur 
contents repeatedly coincide with peaks in organic 
carbon content, it is concluded that sulphur in the 
reservoir sediments originates from the decay of or-
ganic deposits. Sulphur is concentrated as enzyme 
or amino acid in organic material and is reduced and 
removed during microbial decay (Swain 1970).
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8.  Conclusions

The ancient Sri Lankan wewa cascade systems 
which were implemented in the hinterland of Anu-
radhapura more than 2000 years ago represent a 
complex and sustainable watershed management 
strategy. This is proven by the analysis of written 
sources and the exemplary recording of the wewas’ 
spatial pattern in conjunction with a preliminary 
analysis of sediment sources. The implementation 
of wewa cascade systems focused on the same aims 
as those of modern watershed management strate-
gies: f lood prevention, soil erosion control, water 
quality control and irrigation.

While historical written sources focus on the ma-
jor wewas, which were mainly built by the kings, 
chronological information on the minor wewas is 
scarce. However, these minor wewas form the ma-
jority of the approximately 10,000 ancient wewas 
in Sri Lanka still in use. They control runoff and 
prevent soil erosion in the headwater areas and are 
assumed to be the predecessors of the major wewas 
(Panabokke et al. 2002). The sedimentological ana
lysis of the minor wewa systems was carried out to 
prove this assumption. Additionally, the sediments 
were assessed on their eligibility to draw conclu-
sions on human-environment interactions.

Owing to the area’s long settlement history and inten-
sive land use, soil erosion processes and concurrent 
high deposition rates can be expected (Langbein and 
Schumm 1958, Wilson 1973, Saunders and Young 1983) 
but have not been observed, most likely because local 
villagers removed sediments from the wewas for con-
struction or agricultural purposes. In consequence, 
owing to the complex utilisation pattern of the wewa 
cascade systems, their sediments have proved to be 
unsuitable for the precise determination of the age of 
these systems in the hinterland of Anuradhapura and 
the reconstruction of sediment and water fluxes. 

The sediments analysed give a distinct indication on 
the transition from weathered bedrock to the over-
lying sediments. This information is given either 
macroscopically or by significant changes in mag-
netic susceptibility values and increasing contents 
of coarse detritals. A clear differentiation between 
wewa deposits and the underlying fluvial deposits 
remains challenging; this evidence is aggravated by 
the fact that the wewas were constructed in valleys 
characterised by fluvial accumulation. 

During the wet season the shallow nature of the we-
was causes repeated redeposition of the tank sedi-
ments by wave motions. During the dry season the 
desiccated tank areas are used for pasture, and sedi-
ments are exploited for brick production and as ferti-
liser. In consequence, the sediments extracted from a 
tank bed prove to be unsuitable to draw conclusions 
of human-environment interaction during settlement 
history. An inventory of the technical infrastructure 
of the Rota Wewa cascade system together with a 
sedimentological analysis indicates that the thaulla 
areas located at the reservoir inflows will most likely 
be more suitable sediment archives. Also, the river 
bank outcrops indicate that the floodplains of the re-
ceiving streams – at least in their lower courses – will 
be valuable archives for future research.
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