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Zusammenfassung
Die Verteilung, Mächtigkeit und Zusammensetzung der Auelehme in den Tälern der Aar und ihrer Neben-
f lüsse wurden im Rahmen ausgedehnter Geländearbeiten an 25 Standorten untersucht. Im gesamten Ein-
zugsgebiet der Aar konnten insgesamt 48,8 Mill. t Auelehm erfasst werden. Der Großteil davon wurde 
seit dem Spätmittelalter als Folge der historischen Landnutzung und Entwaldung, insbesondere im Berg-
baugebiet am Mittellauf der Aar, sedimentiert. Im Unterlauf der Aar begann die verstärkte Sedimentation 
von Auelehm bereits in der Bronzezeit.
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Abstract
The distribution, thickness and composition of the f loodplain sediments in the valleys of the Aar and its 
tributaries (Taunus Mountains) were investigated by way of extensive fieldwork at 25 locations. In the 
entire catchment area, 48.8 million tons of loamy f loodplain fines could be assessed. Most of these were 
deposited since late medieval times due to extensive historical land use and forest clearing, especially in 
the mining region along the middle course of the Aar. In its lower course, the enhanced sedimentation of 
loamy f loodplain sediments started during the Bronze Age.
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1.  Introduction

1.1 The formation and characteristics of floodplain 
sediments

The deposition of loamy overbank fines results from 
phases with accelerated fluvial activity, in reaction 
to either climatic or land-use related influences to 
a catchment (cf. Hoffmann et al. 2010). Along larger 
rivers, climatically caused Early and Mid-Holocene 
floodplain deposition and erosion phases could be 
clearly evidenced (Schirmer et al. 2005). Repeated dis-
placement of river branches with lateral deposition of 
coarse levee sediments and the horizontal deposition 
of silty overbank fines caused the formation of several 
Holocene river terraces which can be identified in the 
field as small steps. However, these may be covered 
and leveled by younger overbank fines (Mäckel 1969, 
middle Lahn River). Within smaller catchments the 
horizontal sedimentation predominates, but sand- 
and gravel-filled palaeochannels can be evidenced 
as well. In many catchments, 2-3 superimposed gen-
erations of overbank fines were proven (e.g. Brosche 
1984; Neumeister 1964). 

1.2 Triggering of soil erosion by deforestation and 
iron industries

In the catchment of the Aar River (Taunus Mountains) 
excessive soil erosion as a result of various kinds of 
land use was a major problem of the past. This was 
predominantly caused by the strong deforestation 
for iron smelting in the local ironworks of Michelbach 
(since 1656 AD; Michelbacher Hütte) and in numerous 
small, decentralised iron-smelting works which exist-
ed before. Particularly on the slopes in the wide mid-
dle reaches of the Aar, gullies up to 10 m deep, young 
alluvial fans and colluvial layers are widespread (Stolz 
2008, Stolz and Grunert 2006). Regarding these facts, 
the considerable thickness of up to 5.5 m of the loamy 
and gravel-free overbank fines (Auelehm, flood loam) 
in the floodplains of the Aar River and its tributaries 
is not surprising, however, it is distinctly above-av-
erage when compared with other river systems. The 
large amount of fines can be explained by the erosion 
of the widespread loess-rich periglacial cover-beds in 
the catchment (cf. Semmel 1968). 

In eastern Belgium, the early modern iron industry 
triggered the formation of overbank fines containing 
iron slag (Gautier et al. 2009). In the Vils catchment 

(Oberpfalz, eastern Bavaria), Raab et al. (2010) de-
tected historical overbank fines as the result of for-
mer mining, deforestation and iron smelting when 
they found respective contamination with heavy 
metals. The situation in the Vils area is similar to 
that in the Aar catchment. Furthermore, recent stud-
ies and reviews in various Central European regions 
have rendered similar results (Stolz et al. 2012, Stolz 
2011a, Stolz 2011b, Stolz and Grunert 2010, Hoffmann 
et al. 2010, 2008, 2007, De Moor and Verstraeten 2008, 
Houben et al. 2006, Klimek et al. 2006, Coulthard et al. 
2002, Heusch et al. 1996, Pörtge and Molde 1989). As 
not every single event which triggered soil erosion 
can be evidenced by floodplain profiles, in many cases 
colluvia deposits on the slopes may be used instead 
(cf. Bork and Kranz 2008). Niller (2001) evidenced in 
the Kleine Laber catchment (eastern Bavaria) that the 
Holocene colluvium could be much older than the al-
luvial deposits within the same fluvial catchment. He 
compared the sequence of several serially connected 
sediment stores with a system of cascades. 

1.3  Open questions and approaches

This study investigates the loamy overbank fines of the 
Aar and its tributaries in detail. The main focus is on 
the genesis and the age of these sediments of potential-
ly anthropogenic origin, which leads to the following 
questions: When did the sedimentation start, and dur-
ing which periods was it most effective? What were the 
main triggering factors, anthropogenic or natural, and 
how effective was the impact of the local iron industry? 
How much sediment was accumulated in different river 
sections, and how strong was the preceded soil erosion 
in the catchment? Furthermore, which types of flood-
plain sediments can be distinguished and, moreover, 
are they visible as low terraces?

Reliable written sources about phases of sedimenta-
tion in the Aar area do not exist. Therefore, we used 
primarily radiocarbon datings of plant residues em-
bedded in the fines. Furthermore, these results were 
completed by Optically Stimulated Luminescence 
(OSL) datings. More reliable datings could be obtained 
in combination with historical reports such as the 
specific land use of an area at a given time. In one case 
it was possible to involve pond sediments and histori-
cal slag deposits in the Aar floodplain (cf. Stolz and 
Grunert 2008). Typical profiles of the floodplains are 
described and discussed regarding their formation 
and human impact. Based on this knowledge, it was 



32 DIE ERDE · Vol. 144 · 1/2013

Quantification and dating of floodplain sedimentation in a medium-sized catchment of the German uplands: 
a case study from the Aar Valley in the southern Rhenish Massif, Germany

possible to calculate the total amount of overbank 
fines stored in the Aar catchment. The results are 
stated in tons and in cubic metres (see Sections 5 and 
6). Moreover, the results from the Aar will be quan-
tified concerning the eroded soil material from the 
catchment, knowing that we cannot make any clear 
statement about the sediment output from the catch-
ment in general. Finally the example will be compared 

with the knowledge about two streams in the Wester-
wald Mountains and one in the Palatinate Forest.

2.  State of research

Natermann (1941) and Mensching (1951) were the first 
to identify loamy overbank fines as anthropogenic-

Tab. 1: The beginning of anthropogenically affected floodplain deposition in various parts of Germany

No. Region River 
Catch-
ment 

Earliest 
deposition 

Dating methods Authors 

1 
Basin of Leipzig  
(Saxony) 

Weiße Elster Saale 3000 BC Radiocarbon, 
archeological Tinnap et al. 2008 

2 
Leine Hills 
(Lower Saxony) Leine Weser Older 

Subboreal Pollen Pretsch 1994 

3 
Weser Hills 
(Lower Saxony) 

Upper Weser Weser Younger 
Subboreal Pollen, radiocarbon Thomas 1993 

4 
Black Forest Mts. 
(Baden-Württemberg) 

Dreisam, Basin 
of Zarten 

Upper 
Rhein 1500 BC Radiocarbon Mäckel  and 

Friedmann 1999 

5 
Palatinate Forest 
(Rhineland-Palatinate) 

Schwarzbach Saar 1300 BC Radiocarbon Stolz 2011b 

6 
Lower Bavaria 
(Bavaria) 

Vils Donau 1200 BC Radiocarbon Raab et al. 2005 

7 
Lower Bavaria 
(Bavaria) 

Kleine Laaber Donau 500 BC Radiocarbon Niller 2001 

8 
Wetterau Basin 
(Hesse) 

Wetter Main 250 BC IRSL Lang and Nolte 
1999 

9 
Franconian Switzerland 
(Bavaria) 

Aufsess Main 400 BC OSL Fuchs et al. 2010 

10 
Marburg/Gießen area 
(Hesse) 

Lahn Rhein Younger Iron 
Age 

Radiocarbon, 
archaeological Urz 2003 

11 
Alpine Foothills 
(Bavaria) 

Lech Donau 100-400 AD Archaeological Dietz 1968 

12 
Lower Westerwald Mts.  
(Rhineland-Palatinate) 

Gelbach Lahn 400 AD Radiocarbon Stolz 2011a 

13 
Solling Mts. 
(Lower Saxony) 

Ilme Weser 700 AD (at 
the latest) Pollen, radiocarbon Rother 1989 

14 
Volcanic Eifel Mts.  
(Rhineland-Palatinate) Lieser Mosel 700 AD (at 

the latest) 
Radiocarbon, 
archeological, OSL Stolz et al. 2012 

15 
Wetterau Basin 
(Hesse) 

Wetter Main 850 AD Radiocarbon Houben 2002 

16 
High Westerwald Mts. 
(Rhineland-Palatinate) 

Große Nister Sieg 900 AD Radiocarbon, 
archeological Stolz 2011a 
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ally influenced sediments. Hövermann (1953) added 
that overbank fines were not only deposited in con-
sequence of anthropogenic land use. Hempel (1959) 
divided the flood-plain sediments of rivers in Central 
Germany into four different types: 

 1. late glacial loams and loesses, partly interlocked 
with Weichselian gravel above bedrock;

 2. late glacial loams or loesses which are displaced by 
fluvial activity;

 3. older overbank fines which are the product of anthro-
pogenically caused soil erosion on the slopes; and 

 4. younger overbank fines resulting from young an-
thropogenic soil erosion on the slopes. 

Generally, it is not easy to differentiate between sedi-
ments triggered by anthropogenic soil erosion and 
natural floodplain sediments. In fact, even gravelly 
sediments could have been deposited during the Holo-
cene (cf. Seidenschwann’s investigations (1989) in the 
Kahl catchment, northern Spessart Mountains, with 
Mid-Holocene gravel deposition). 

The beginning of the anthropogenically influenced 
sedimentation differs substantially in various catch-
ments in the German uplands (Dreibrodt et al. 2010). 
Lang and Nolte (1999) asserted that the start of the 
deposition began in the Late Iron Age/Roman Period 

in the early settled Wetterau depression, 60 km east 
of the Aar valley. They determined the maximum 
sedimentation rates for the Early Middle Ages since 
750 AD. In the early settled regions of Germany, hu-
man impact on the landscape occurred at least in the 
Early Neolithic (ca. 7500 BP; Dotterweich et al. 2008). 
In the Lowlands of Leipzig (Central Germany) Tinapp 
et al. (2008) evidenced that the start of anthropogeni-
cally introduced floodplain deposition began  around 
3000 BC. The wide differences concerning the start of 
 anthropogenically affected floodplain deposition in 
different German regions are presented in Table 1. 

After the disintegration of the Roman Empire at the 
end of the 3rd century AD, many parts of Germany 
became reforested (Bork et al. 1998: 221). This can 
also be applied to the Taunus Mountains since the 
Roman Limes runs through the upper part of the Aar 
catchment. For some time afterwards, pollen studies 
by Hildebrandt et al. (2001) in the Lower Westerwald 
Mts., located 25 km north of the Aar catchment, have 
shown a low level of woodland during the High Mid-
dle Ages. This was followed by a reforestation phase 
during the Late Middle Ages (spätmittelalterliche Wüs-
tungsperiode, cf. Born 1989). Schmenkel (2001) discov-
ered the largest proportion of non-tree pollen for the 
High Middle Ages, in the Usa Valley, east of the Aar.

3.  Regional setting

The Aar River drains the central part of the Taunus 
Mountains, representing the south-eastern part of the 
Rhenish Massif (Taunus Mountains). This area drains 
into the rivers Lahn and Rhine and is bordered in the 
east by the Wetterau depression, north-east of Frankfurt 
(Fig. 1). The Aar passes through the Taunus Mountains 
from its southern rim (quartzite range) near the city of 
Wiesbaden into the Lahn River in the north near Limburg 
an der Lahn. The catchment comprises a total of 312 km². 
Variscan metamorphics, mainly clayey slates and Taunus 
quartzite are forming the bedrock in the upper reaches. 
The deeply incised middle reaches of the valley have a 
difference in altitude of nearly 180 m as compared to the 
surrounding peneplains, interpreted as palaeosurfaces 
from the Mesozoic and Tertiary (cf. Andres 1967). 

Nearly all valley slopes are covered by periglacial slope 
deposits (Sauer and Felix-Henningsen 2006,  Kleber 
1997, Semmel 1968) consisting of a debris-rich basal 
layer, one or several more or less loessic intermediate 
layers, and a loess- and debris-containing upper layer. 

Fig. 1 Location of the Aar catchment in Rhineland-Palatinate and 
Hesse (cartography: T. Bartsch, Mainz University)

Quantification and dating of floodplain sedimentation in a medium-sized catchment of the German uplands: 
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On many exposed slopes within the Aar catchment and 
at the rim of the quartzite range of the Taunus Moun-
tains, the middle layer may be missing. In the middle 
and lower reaches of the Aar skeleton-free loesses 
were found at some locations. The periglacial cover-
beds are regularly covered by Holocene colluvium re-
sulting from anthropogenic soil erosion, in downward-
sloping positions as well as on terraces (Stolz 2011c).

The moderate climate of this region is characterised 
by cool and humid winters and warm summers with 
average temperatures of -1.9 to 1.0°C (January) and 
14.3 to 17.4°C (July; meteorological offices of Klei-
ner Feldberg and Wiesbaden, period 1961-1990, Mühr 
2007). The mean annual precipitation ranges between 
800 and 900 mm and a thin layer of snow is quite com-
mon in January and February.

Quantification and dating of floodplain sedimentation in a medium-sized catchment of the German uplands: 
a case study from the Aar Valley in the southern Rhenish Massif, Germany

Tab. 2:  Quantification of soil erosion using data of floodplain sedimentation in the Aar catchment
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4.  Materials and methods

4.1. General methods

More than 150 drillings were cored, at 14 locations 
in the Aar valley and its tributaries, to a depth of as 
much as 8 m, and more than 30 pits were dug along 
several drilling series in the floodplain. All sampling 

points were tachymetrically surveyed. This fieldwork 
largely followed the standards of the international 
World Reference Base for Soil Resources 2006 (In-
ternational Union of Soil Sciences 2006). The official 
 German Bodenkundliche Kartieranleitung, 5th edition 
(Ad-hoc AG Boden 2005) was used for the description 
of genetic soil features. Soil colours are described af-
ter Munsell Colour Company (1990).

Quantification and dating of floodplain sedimentation in a medium-sized catchment of the German uplands: 
a case study from the Aar Valley in the southern Rhenish Massif, Germany

Tab. 3: Datings from the Aar floodplain
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Further data of drillings from 11 other locations, which 
have been cored since the 1930s and catalogued by the 
drilling archives of the Hessian Office of Environment 
and Geology (Hessisches Landesamt für Umwelt und 
Geologie), were incorporated. The interpretation of the 
data was partly difficult due to the different techniques 
of geological procedure (cf. Seidel and Mäckel 2007). 

Afterwards, the samples were analysed for their gran-
ulometry (Köhn), organic matter (loss on ignition), pH 
(CaCl2), carbonate content (Blume 2000) and in some 
cases also for their heavy-mineral content of the fine-
sand fraction (0.063-0.2 µm). Charcoal samples were 
separated from the sediments by an archaeo-botan-
ical elutriation procedure ( Jacomet and Kreuz 1999). 
They were identified under the microscope (Schwein-
gruber 1990) and some samples as well as other or-
ganic residues could be radiocarbon-dated (AMS dat-
ing, calibrated by the data sets of Reimer et al. and 
Intcal04; cf. Stuiver et al. 1998). Five sediment sam-
ples were dated in the laboratory of the Department 
of Geography at Humboldt University in Berlin using 
optically stimulated luminescence (OSL) (Tab. 3).

4.2 Calculations for the quantification of  floodplain 
sediments 

Due to the altitude and width of the floodplains, the 
Aar and all its tributaries were classified in 16 river 
sections in order to quantify the amount of overbank 
fines eroded from the slopes in the catchment (Tab. 2). 
Based on field results and the German topographic 
sheets 1:25,000, the total length of each valley sec-
tion was recorded. Furthermore, the average widths 
of uniform floodplains were determined in the field 
and on maps (up to 15 measurements per section). 
The third necessary variable is the average thickness 
of each section, which was calculated by the collected 
data. Finally, we calculated the total volume of each 
river section by means of the following formula:

Volume of overbank fines in river section x 
= length × average width × average thickness

The following values were assumed for some small 
tributaries, which were not studied in the field: an 
average f loodplain width of 50 m and 100 cm as an 
average thickness of overbank fines (Tab. 2). The 
value of 100 cm is based on several field obser-
vations in the Aar catchment. Their lengths were 
measured on topographic maps.

By this procedure and the addition of the subtotals, 
the amount of recent available overbank fines could 
be calculated for the whole catchment. 

4.3 Optically stimulated luminescence (OSL)  dating 

Using OSL, it is possible to date the most recent day-
light exposure of mineral grains which occurred nor-
mally during sediment transport prior to deposition. 
Thus, OSL is an appropriate method to estimate the 
geo morphological processes by dating their related 
sediments, e.g. loamy overbank fines. However, incom-
plete resetting of the luminescence signal before burial 
can lead to age overestimation often observed in flu-
vial environments. To circumvent this problem, differ-
ent approaches have been proposed, such as the use of 
single grains or small aliquots containing only a limited 
number of grains (e.g. Wallinga 2002, Jain et al. 2004). 

In this study, OSL dating was applied to small multi-
ple-grain aliquots of sand-sized quartz (90-200 µm). 
After separating the required grain size fraction by 
wet sieving, carbonates and organic matter were re-
moved using hydrochloric acid (10 and 30%) and hy-
drogen peroxide (10 and 30 %), respectively. Quartz 
was then extracted by density separation using 
lithium polytungstate heavy liquid (LST, 2.75 and 
2.62 g/cm³). The following treatment with hydro-
fluoric acid (40 %, 60 min) eliminated any potential 
feldspar contamination and removed the alpha ir-
radiated outer layer of the quartz grains. After re-
newed sieving (90 µm) small multiple-grain aliquots 
were prepared containing approx. 200 grains each. 
This number of grains is assumed to be appropriate 
to detect insufficient bleaching (Fuchs and Wagner 
2003). Positively skewed multimodal palaeodose 
distributions revealed that the floodplain sediments 
were in fact heterogeneously bleached prior to depo-
sition. In order to select the best bleached grain pop-
ulation, the minimum age model (MAM) by Galbraith 
et al. (1999) was applied. However, the resulting OSL 
ages have to be considered as maximum ages.

All OSL measurements were performed on a Risø 
TL-DA 15 reader using the standard single-aliquot 
regenerative dose (SAR) protocol (Murray and  Wintle 
2000). The prepared quartz aliquots (sets of 24 to 
48 aliquots per sample) were stimulated with blue 
LED light (e = 470 ± 30 nm) at 125°C for 40 s, and the 
resulting OSL signals were recorded through a Hoya 
U 340 filter (e = 330 ± 40 nm). The preheat tempera-

Quantification and dating of floodplain sedimentation in a medium-sized catchment of the German uplands: 
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Fig. 2 Typical profiles of the Aar floodplain at 25 investigated locations which show the distribution and characteristics of the floodplain 
 deposits. Each profile has been selected from 2 to 30 drillings and excavations (data of sites No. 7, 8, 9, 11, 16, 17, 18, 20, 22, 23, 25 by 
Hessisches Landesamt für Umwelt und Geologie, drilling archive; cartography: S. Böhnke).
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ture was set to 200°C (10 s), the test dose cut-heat 
temperature to 160°C. These settings were verified 
performing preheats and dose recovery tests on 
samples HUB-0136 and HUB-0137.

The sediment dose rates were estimated by meas-
uring the contents of uranium, thorium and potas-
sium, then applying neutron activation analysis 
(Becquerel Laboratories, Mississauga, Canada). 
The cosmic-ray dose rates were estimated from 
geographic position, elevation and burial depths 
(Prescott and Hutton 1988, 1994).

5.  Results

The floodplain sediments of the Aar River were stud-
ied at 25 locations between the upper reaches and the 
lower reaches of the main valley and locally on the 
floodplains of some tributaries. All sites can be distin-
guished by their position in the landscape, their valley 
shapes and their widths of the floodplains in six subar-
eas (Fig. 2): the upper reaches from Taunusstein-Hahn 
to the bridge near the village of Seitzenhahn (3 loca-
tions), and the middle reaches with a deep and narrow 
v-shaped valley from Adolfseck to Michelbach; further-
more, the middle reaches with a more expansive valley 
from the estate of Michelbach to Zollhaus, and the low-
er reaches from there to Diez. The valley floor at this 
point, is broad at the beginning (up to 500 m) and be-
comes narrower further down the valley near the vil-
lage of Holzheim, due to more resistant metamorphites 
of the Middle and Upper Devonian. Three sites are lo-
cated in the longest tributary, the Aubach, whereas the 
other, smaller tributaries contain seven sites. 

5.1 The distribution of loamy floodplain  sediments 
in the Aar catchment

Principally, the content of skeleton in the overbank 
fines tends to increase top-down in the profile. Usu-
ally, the loams on the top are completely free of gravel. 

The thickness of the loams varies in the longitudinal 
profile of the valley. In the upper reaches there are 
skeleton-free loams almost up to 2 m thick. In the 
narrow part of the middle reaches the thickness di-
minishes to 1 m, whereas in the wide part of the lower 
middle reaches, where the valley enlarges, the regu-
lar thickness rises to 4 m and, locally, up to 5 m. In 
the lower reaches, the loams are on average 3 m thick. 

The former assumption that the thickness of the grey-
brown sandy overbank fines in the lower reaches of 
the Aar River near Freiendiez could reach 8 m, which 
was reported by the former German Institute of Soil 
Researches (Reichsstelle für Bodenforschung) in 1937 
(cf. Stolz and Grunert 2008), proved to be wrong. In the 
summer of 2010, this was disproven by several 6 m deep 
drillings at the same place. Four m of sandy overbank 
fines are underlain by a gravel layer more than 2 m thick. 
Very clayey saprolithic Devonian slates were found at a 
depth of 6 m. It is possible that in 1937 the geologists 
drilled into the loamy filling of a former stream. Other-
wise, they could have interpreted the grey saprolithe as 
overbank fines below the local groundwater level. 

The thickness of floodplain sediments of the tributar-
ies ranges between 4  m at the Aubach and only 0.8 m 
at the smaller ones. 

5.2  A typical sequence of  floodplain sediments 

According to the explanations to the German geologi-
cal map 1:25,000 (No. 5714 and 5614), Koch and  Kayser 
(1881, 1886) were the first to assume an Early Holo-
cene age for the overbank fines in the Aar catchment. 
They characterised the accumulations into 3 types: 

 1. Overbank fines, downwards of the village of 
Niedern eisen (Fig. 2) above the recent flood -level;

 2. Humic overbank fines (Riethboden) close to the 
river in the recent flood area; 

 3. Sandy and gravelly alluvial sediments in the fre-
quently flooded locations (Alluvionen der Tal-
ebenen). 

During the recent investigations, in some places, 
a second, marginally higher f loodplain level (50-
100 cm) could be monitored, which has not got 
overrun by recent f lood events (cf. the results of 
Heusch et al. (1996) from the lower Sieg River). 
These different f loodplain levels are difficult to 
recognise because they tend to  occur sporadically. 
The top is formed by overbank fines. 

Gravelly and sandy deposits as described by Koch and 
Kayser (1886) could only be detected near to the rim 
of natural, unregulated sections of the Aar River. Such 
formations consisting of gravel and a thin cover of 
loamy sediments on top can be identified as levees.

Quantification and dating of floodplain sedimentation in a medium-sized catchment of the German uplands: 
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On the basis of selected examples of the investigated 
locations, we have reconstructed a typical top-down 
profile for the floodplains of the Aar River (soil types 
vega/gley, c.f. the profiles presented in Fig. 2):

 1. brown-grey humic overbank fines, recently dis-
placed during flood events, skeleton-free or with 
less gravel content; sometimes with initial soil for-
mation (aM horizon; cf. Ad-hoc AG Boden 2005);

 2. a horizon with rust-coloured and black oxidation 
marks in skeleton-free overbank fines, which 
is underneath the groundwater level for a few 
weeks per year. Along former roots or wormholes  
(macropores), the loam is grey due to reduc-
tion (aGo horizon); 

 3. a grey reduced, skeleton-free, silty loam, perma-
nently lying below the groundwater level (aGr ho-
rizon). It often comprises charcoal fragments and 
rarer anthropogenic relics, like shards or hand-
crafted pieces of wood. Frequently, there are sand- 
or gravel-filled channels inside the loam, which 

rarely comprise humus or peaty material, but 
rather very clayey sediments at the base. In other 
sectors, thin layers of sand or fine gravel occur, 
which signify former flood events. At some places, 
it was noted that the overbank fines become more 
clayey in downward direction. This could be an in-
dication of calmer conditions of sedimentation on 
a still wooded floodplain. 

 4. Reduced, very wet and frequently sandy overbank 
fines with a low-to-half gravel content and little-
to-no charcoal fragments (aGr horizon). 

 5. Well-rounded fine gravel (diameter up to 8 cm, 
exceptionally also up to 20 cm), partly loamy or 
interspersed by loamy layers, underlain by coarse 
gravel (diameter up to 20 cm and more).

 6. Bedrock (unweathered or sparolithic). This de-
scription is mainly representative of the flood-
plains of the Aar and the Aubach and less so for 
the smaller tributaries. However, at some sites 
modified sequences occur.
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Fig. 3 A typical profile from the floodplain of the Aar River near the village of Rückershausen (50°26’ N, 8°06’ E; design: T. Bartsch, Mainz  University)
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Fig. 4   Cross-section of the Aar floodplain near the Felsentor mill (Fig. 2, No. 13) 

To illustrate, we present the analysis of a typical 6 m 
deep drilling-profile in the floodplain of the Aar River, 
near the village of Rückershausen (Fig. 2, No. 4; analysis 
in Fig. 3). The clayey-silty overbank fines are complete-
ly free of skeleton, down to a depth of up to 5 m. Until 
a depth of 0.4 m, the strong clayey silt is grey-brown 
(10YR 4/4; soil colour after Munsell Colour Company 
1990) due to more than 2% of organic matter and iron 
oxides. Further down, the sediment becomes oxidised 
(10YR 6/4) as seen by rust stains and, underneath, ho-
mogeneously grey (2.5 YR 5/1) due to reduction. Be-
tween 2 and 3 m deep, the clay content rises remarkably 
to more than 30% indicating a change of sedimentation. 
This correlates with calm sedimentation conditions. At 
4.45 m, the skeleton content rises again. This indicates 
a change of sedimentation conditions. The fine gravel 
could have been displaced during flooding from the 
pure gravel layer underneath. The content of organic 
matter fluctuates throughout the profile. Partly mac-
roscopic remains of wood, charcoal fragments or other 
pieces of plants were found. In the field it is difficult to 
distinguish them from roots. The solid basal layer of 
larger gravels was not possible to penetrate by drilling.

5.3  Exemplary cross-profiles in the flood plain

Three cross-profiles from different sections of the 
valley are demonstrated (Fig. 4-6). 

5.3.1 The floodplain near the Felsentor mill (narrow 
middle reaches)

The example shows the relative small floodplain of the 
Aar near the Felsentor mill (50° 10’ 38’’ N, 8° 4’ 17’’ E; 
Fig. 2, No. 13, Fig. 4), which was investigated by sev-
eral drillings. Due to artificial river regulation in the 
south-east, a former undercut slope is visible. The 
transect also provides evidence that the Aar normally 
runs further east in a recent swampy and loam-filled 
stream. Another former stream is recognisable in the 
middle of the floodplain. However, it is not possible to 
date these forms since datable samples do not exist.

Due to the lesser widths of the floodplain, the loam in-
corporates some gravel as a result of more dynamic 
flow (jet effect). Stillwater conditions were only pre-
dominant in the old streams. The thickness of the 
loams ranges from 1.2 to 2.4 m in the creeks. Near to 
the river, probably regulated in Early Modern times, 
the young overbank fines form a typical embankment 
of some decimetres in height.

5.3.2 The floodplain in the Auwiesen near Hausen 
über Aar (wide middle reaches)

The floodplain in this section is around 140 m wide. Fig. 5 
shows a section near the river course (50° 15’ 13’’ N, 
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8° 3’ 28’’  E, Fig. 2, No. 6). The mostly silty and – in the 
 lower layers – sandy loams are 4.3 to 5.6 m thick. The 
whole profile is poor in skeleton. Only a few channels, 
filled with sand, fine gravel and sandy layers appear in 
the profile. At a distance of 25 m away from the river, an 
old channel with a sandy filling and a humic layer above 
was detected. Macroremains of plants (but not the humid 
acids; cf. Niller et al. 2001) from this layer were dated by 
14C to the age cal. 1520-1450 BC (Beta-287555; Bronze 
Age). The eastern part shows clayey overbank fines above 
gravels (Fig. 5). This indicates laminar flowing probably 
on a still forested floodplain. 

The loamy sediment itself, at a depth of 94 cm, was dated 
by OSL to 80-460 AD. However, the OSL measurement 
revealed insufficient bleaching during the last sediment 
redeposition, which was proven by a high paleodose 
scatter. Thus, the result has to be interpreted as the 
maximum age. After comparing this case with that of 

the dating of the nearby Untergrund meadows (Fig. 2; 
No. 5), this result was not included in the following 
 spatio-temporal quantification of floodplain sediments. 

5.3.3  The floodplain near Oberneisen (lower reaches)

The cross-section downriver from Oberneisen 
(50° 10’ 35’’ N, 8° 4’ 14’’ E; Photo 1 and Fig. 6) re-
presents about half of the f loodplain east of the 
river (180 m). In general, Reichelt (1953) found 
that there is no relationship between sediment 
thickness and valley length. Händel (1969), howev-
er, could demonstrate that along the Weiße Elster 
(Saxony) overbank fines are very thick on large 
f loodplains of meandering rivers.

In the transect presented here, it is obvious that the 
modern regulated river is now running closer to the 
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Fig. 5   Cross-section of the Aar floodplain near the village of Hausen über Aar (Fig. 2, No. 6)
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north-western slope than before. Four OSL samples 
were taken from locations along the cross-section: two 
from the loams in the western part and one sample 
from a thin sand layer of the gravels underneath (Fig. 6). 
These datings yielded the stratigraphic ages of 1600-
1680 AD (90 cm; HUB-0135), 1520-1600 AD (115 cm; 
HUB-0136) and 1410-1530 AD (140 cm, HUB-0137) 
from a sand layer embedded into fine gravel. In the east-
ern part of the section one OSL sample was taken from 
the sandy filling of a former channel below the overbank 
fines. It was dated at the maximum age of 600-880 AD 
(210 cm; HUB-0138) because of insufficient bleaching.

Furthermore, in the channel-filling lots macro-
scopic charcoal fragments were found (1592 mg/L). 
One of these was dated by 14C age to cal. 1220-1270 
AD (Beta-287556; High Middle Ages). The results 
of the determination of the species in the charcoal 
spectrum are 42% (weight) Quercus spec., 33% 
half-ring-porous deciduous woods and 25% Fagus 
sylvatica of the determinable fragments. Fagus syl-
vatica did not reappear in the region before the 
Sub-atlantic period and is now the main component 
of the potential natural vegetation. This proves 
that the deposits are of Young Holocene age, since 
ca. 4 ka BP (cf. Pott 1995). The dated small channel 
has shown a reactivating phase of the former river 
course, since the backfilling 2 m underneath the 
small channel is older (Fig. 6). 

5.4 Quantification of floodplain sediments in the 
Aar catchment

To quantify the nearly skeleton-free overbank fines, 
the results of the investigated locations were trans-
ferred onto the concerning river sections (Tab.2; 
methods described in Section 3.2). 

A total of 32.5 million m³ or 48.8 million tons of over-
bank fines was calculated (using a conversion factor 
of 1.5, Hoffmann et al. 2007). The calculated area of 
floodplains was 16.43 km² as opposed to a theoretical 
erosion area of 296.2 km². This results in an average 
erosion amount of 1647 t/ha or 109.8 mm. The highest 
amounts were accumulated in the wide middle reach-
es and in the upper part of the lower reaches between 
the villages of Michelbach and Zollhaus (Tab. 2; Fig. 2).

5.5 Dating and spatiotemporal quantification of 
overbank fines in the Aar catchment

For the neighbouring catchment of the Wörsbach, 
20 km east of the Aar Valley, Anderle (1991) examined 
a site in the town of Idstein with 80 cm of fluvial silt 
sediment above 105 cm of clayey-silty fine sand. A bone 
fragment from the silt was dated to cal. 1165-1285 AD 
(High Middle Ages). A piece of wood from the fine sand 
was dated to cal. 575-777 AD (Early Middle Ages). By a 

Fig. 6   Cross-section of the Aar floodplain near the village of Oberneisen (Fig. 2, No. 2)
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corresponding pollen analysis the pollen volume of her-
baceous plants amounted to 400 % of the tree pollen. 

In a construction pit near Burg Hohenstein in the 
 narrow middle reaches of the Aar (Fig. 2, No. 12) 
 geologists from the Hessian Geological Survey dated a 
tree log to 970-1025 AD (Hv-19789; Tab. 3; Stolz 2008).

In the Schmidtwiesen meadows, south of Michelbach, 
we dated charcoal fragments from a slag-filled pit 
which had been dug in the older part of the overbank 
fines covered by younger floodplain sediments. The 
charcoal was dated to cal. 1427 - 1471 AD (Erl. 8915; 
Stolz and Grunert 2008). Below the slag-filled pit, at the 
base of the overbank fines, gravel could be detected. 

From 1333 to 1820 AD, an artificial pond existed 
near the village of Adolfseck (Fig. 2, No. 14). Its 
clayey sediments are covered by 65 cm of younger 
overbank fines. These correlate with 55% of the 
total amount of overbank fines in a comparable 
 profile (Stolz and Grunert 2008). 

Subsequently in the Untergrund meadows south of 
Hausen über Aar (Fig. 2, No. 5), the authors dated a 

charcoal fragment at a depth of 174 cm in the skeleton-
free overbank fines to cal. 1033 - 1145 AD (Erl-6435).

Due to these different dating methods, it is possible 
to quantify the floodplain sediments temporally and 
 spatially. Basically, even gravelly sediments could have 
been accumulated during the Holocene. A Late Medi-
eval charcoal fragment from Oberneisen originates 
from the upper part of a gravel layer below the loamy 
deposits. Nevertheless, due to this uncertainty in non-
dated profiles, we only used the loamy overbank fines 
for quantification. In the river section from Wehen to 
the Felsentor mill, 45 % of the overbank fines were 
accumulated between 1000 and 1320 AD and 55 % 
between 1320 and ca. 1850. In the section from the 
Felsentor to Michelbach the proportion is 30 % to 70 %.

For the section from Michelbach to the Aar estuary near 
Diez (Lahn River), we had to produce calculations with 
another time scale, which gave the following results: 
46 % of the skeleton-free sediments in this section were 
accumulated from 1500 BC to 1000 AD, only 10 % during 
the High Middle Ages (1000 - 1320 AD) and since then, 
44 %. The volumes of floodplain sediments concerning 
the sections and the time periods are shown in Figure 7.

Photo 1 Aar floodplain near Obern          eisen, view  to wards the south (Photo: Christian Stolz)
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6.  Discussion

6.1  The floodplain sediments of the Aar River

The thickness of floodplain sediments in the Aar catch-
ment is highly variable, but the total amount is rather 
high when compared with other catchments (cf. Stolz 
2011a; Lang and Nolte 1999). This heterogeneity is 
the result of different valley forms, varying widths of 
the floodplain in different valley sections and differ-
ent valley gradients. Thus, in the valleys of the small-
er tributaries the young sediments are thinner and 
richer of skeleton, due to the larger valley gradients 
and narrow floodplains. In different valley positions, 
a period of agriculture and soil erosion for a specific 
time period may result in a very different thickness of 
floodplain sediments. The generally high thickness of 
these sediments in the Aar catchment is based on the 
widespread loess-containing slope deposits and a long 
history of agriculture, especially in the middle and 
upper reaches of the valley. Another reason is the se-
vere deforestation by small, decentralised ironworks 
during the Middle Ages and one large ironwork dur-
ing Early Modern times. Since 1656 and particularly 
in the 18th century, the iron smelt of Michelbach was 
one the largest consumers of charcoal in the Eastern 
Rhenish Massif. Temporarily, the ironworks of the his-
toric Duchy of Nassau employed around 400 people to 
transport the charcoal needed from all over the Mid-

dle Rhine region. Some ironworks in the region were 
even shut down temporarily because of the lack of 
charcoal. Only a small portion of the forests remained. 
Starting in 1856, the factory used fossil hard coal from 
the Rhine-Ruhr area (Geisthardt 1957). Another result 
of the deforestation was the formation of numerous 
gullies, concentrated in the wide middle reaches close 
to the ancient smelt of Michelbach (Stolz and Grunert 
2006). In this area, the thickness of the floodplain 
sediments is extremely high. Investigations on alluvial 
fans of some gullies revealed remarkably rich skeleton 
contents, like those of the periglacial coverbeds of the 
adjacent slopes (Stolz 2008). Therefore, we conclude 
that the gully sediments, especially the fine material, 
partly reached the Aar floodplain. 

Within a typical floodplain profile, texture and sedi-
ment properties clearly change. In the lower section of 
the Aar the loams become more clayey. This may indi-
cate that there was a very slow water flow on the still 
wooded floodplain before the deforestation started. 
The discovery of whole tree trunks (Fig. 2, No. 12) at 
the base of the loams supports this hypothesis. The 
sandy gravel underneath the trunks indicates that 
there was a higher transport energy of the river during 
flood events (snow melt) in the Late Pleistocene and 
Early Holocene. However, without datings, a degree of 
uncertainty remains with regard to defining the real 
age of fine gravel underneath the loamy deposits. 

Quantification and dating of floodplain sedimentation in a medium-sized catchment of the German uplands: 
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Fig. 7 Spatiotemporal quan-
tification of flood plain 
sedimentation in the 
Aar catchment
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6.2  Dating and quantification of sediments

Datings in combination with historical facts are time 
markers to quantify the sediments. In the Aar catch-
ment 13 million tons of floodplain sediments were ac-
cumulated during the Holocene until 1000 AD, which 
is approximately the beginning of the High Middle 
Ages in Central Europe (cf. Born 1989). The lower 
middle reaches and the lower reaches of the catch-
ment belong to the earlier settlement phase. Most of 
the settlements in this region were founded during 
the Early Middle Ages; their names frequently have 
the typical suffixes of this period: -hausen and -heim 
(Bach 1927). In this case, it is probable to date a large 
amount of the loams, which were deposited between 
1500 BC and 1000 AD, to the Early Middle Ages and 
the Franconian colonisation period. Moreover, an in-
fluence of prehistoric soil erosion in combination with 
floodplain sedimentation is highly likely, because the 
oldest date from the base of the overbank fines near 
Hausen refers to the Bronze Age. However, it is pos-
sible that the silty-loamy deposits in the middle and 
upper reaches represent partly displaced late glacial 
loesses. On several foot-slopes adjacent to the flood-
plain presumably primary loesses locally exceeding 
6 m were deposited which was exposed in the excava-
tion of the construction pit for a shopping centre near 
Michelbach in November 2010. 

In the upper reaches, which were settled later,  village 
names suffixes from the high-medieval settlement 
period (-hain/-hahn, -schied and -roth) are common. 
During this period, until the beginning of the Late 
Middle Ages at around 1320 AD, 9 million tons of sedi-
ment were accumulated in the whole catchment. Af-
terwards, the centralised iron industry of Michelbach 
can partly be held responsible for around another 
27 million tons, which accumulated in late medieval 
and early modern times. Altogether, this value con-
forms to the calculations of 109.8 mm soil loss in the 
whole Aar catchment outside the floodplain area. 

Summarised for the whole catchment, 27 % of over-
bank fines were accumulated during the Holocene 
 until 1000 AD, 18 % between 1000 and 1320 AD and 
55 % between 1320 and 1850 AD.

More information is needed regarding the large 
amount of sediment which was accumulated in the 
middle and lower reaches during the Holocene until 
1000 AD. Maybe it was partly produced by natural 
processes. Nevertheless, the floodplain sedimenta-
tion must have started in the wide middle and in the 
lower reaches of the Aar catchment, because these 
are the early-settled areas. In the upper reaches over-
bank fines older than from 1000 AD onwards were 
not found. The Roman influence is not evidenced al-
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Tab. 4   Budgets of the floodplain sediments of the Aar and some other streams in the western German uplands in comparison
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though the Romans settled for a short period in the 
upper reaches of the Aar to protect the Limes (Baatz 
and Herrmann 2002). However, old deposits in the up-
per course could have been eroded before overbank 
fines of the High Medieval Ages were even accumu-
lated. Schmenkel (2001) evidenced in the Usa Valley, 
30 km east of the Aar, a significant increase of non-
tree  pollen during the Iron Age, which decreased 
again in the Roman age. Therefore, human influence 
must have been stronger before Christ. Cereal pollen 
could be evidenced since the Early Middle Ages. The 
largest proportion of non-tree pollen is proven for the 
High Middle Ages (Schmenkel 2001). 

Based also on other cross-sections which were cored 
in the valleys of the Große Nister and the Gelbach 
(Westerwald) and in the valley of the Schwarzbach 
(Palatinate Forest), it was possible to calculate the 
amount of overbank fines that was stored in their 
 respective floodplain. 

For each transect the average thickness of the over-
bank fines was calculated, in order to eliminate the 
effects of channels and embankments. Then the data 
were extrapolated to the total width of the floodplain. 
As the data can be regarded as being representative 
of a certain reach of the river, it was possible to cal-
culate the total amount for each of the river sections. 
The tributaries of the Aar were included in the calcula-
tion because of their remarkable sediment input to the 
main valley. As referred to above, reasonable estima-
tions were made for sections that could not be studied 
in detail. The amount of sediment determined was then 
compared with the potential erosion area of the catch-
ments (catchment size minus floodplain area; Tab. 4).

This result complies with our results from the Große 
Nister catchment in the High Westerwald Mountains, 
north of the Aar, from the younger settlement phase, 
where 55 % of the overbank fines were deposited 
from the late medieval to the modern age. The av-
erage value of soil erosion in the Nister catchment 
amounts to 56.1 mm and in the adjacent Gelbach 
catchment to 72.3 mm (Stolz 2011a). In contrast, Lang 
and Nolte (1999) dated most of the young overbank 
fines of the Wetter River at between 700 AD and 1000 
AD, which shows that the loess-rich Wetterau depres-
sion, as part of the Rhine-Main lowlands, was settled 
much earlier than the upland regions.
 
In the Aar Valley with more than 32 mill. m³ of sedi-
ment volume, equivalent to almost 50 mill. tons  

(1.5 t/m² as calculated by Hoffmann et al. 2007), it 
is obvious that twice as much skeleton-poor, loamy 
floodplain sediments were stored than in the val-
leys of the Nister (12.9 mill. m³ or 19.3 mill. t) and 
the Gelbach (15.1 mill. m³ or 22.7 mill. t). The dif-
ference between the Nister and the Gelbach results 
from their different catchment sizes (246 km² and 
221 km² respectively). In the Schwarzbach catchment 
(35,1 mill. m³ or 52,7 mill. t), where the bedrock is 
mostly Bunter Sandstone, the total quantity of over-
bank fines is comparable to that of the Aar, despite the 
catchment area being four times larger (Stolz 2011b).

On average, in the Aar catchment at least 11.0 cm or 
1647.2 t/ha of areal soil erosion was necessary for de-
positing the overbank fines to be found here. For the 
Gelbach catchment the values are 7.2 cm or 1,084.5 t/ha, 
for the Nister catchment 5.6 cm or 841.8 t/ha and for the 
Schwarzbach catchment 3.1 cm or 465.5 t/ha; cf. Tab. 4). 

6.3  General problems with budgeting soil erosion

In evaluating these erosion rates, one should keep in 
mind that local extreme weather events and changes 
in land use are likely to have caused the partial re-
moval of overbank fines, but unconformities are dif-
ficult to find though. Evidence of such floodplain ero-
sion was found by Schulte and Heckmann (2002) in the 
Hegau loess area of south western Germany. 

The distribution of alluvial deposits in a river catch-
ment is often not necessarily linear to human impact. 
The crucial factor for starting an increasing flood-
plain deposition is, in most cases, the exceeding of 
a critical threshold in soil erosion (Hoffmann et al. 
2010). Smaller former erosion events can only be de-
tected by Holocene colluvia along the slopes. 

Thus, the amount of floodplain deposits is only one 
variable amongst several for budgeting soil erosion 
within a catchment. Other factors are: the degree of 
truncation of soil profiles within the catchment, the 
colluvial sediment storage at the slopes, local alluvial 
fans and the output from the catchment. It is, however, 
difficult to measure or to calculate these. For meas-
uring the erosion rate of the slopes more information 
about the original thickness of those soil profiles is 
needed (cf. Förster and Wunderlich 2009). In a similar 
way, the measuring of the colluvia volume is compli-
cated because geological and pedological maps are 
unusable in most cases (cf. Moldenhauer et al. 2010, 
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Seidel and Mäckel 2007). Furthermore, the thickness 
of colluvia is very variable. This study focuses only 
on the floodplain sediments. From these, a minimum 
value for the average truncation of soil profiles can be 
derived. This value is calculated to 11 cm in the Aar 
catchment and, in contrast, 3.1 cm in the more recently 
populated and densely forested Schwarzbach catch-
ment (Palatinate Forest; Tab. 4; Stolz 2011b). Seidel 
and Mäckel (2007) tried to calculate the total erosion 
for the Elz (Black Forest) and the Möhlin catchments 
(Breisgau, southwest Germany, partly with prehis-
toric settlements) to 31-61 cm, respectively 44-79 cm. 
These high values are three to seven times higher than 
those from the Aar catchment. Therefore, a much high-
er amount of total erosion would be plausible. For the 
Aufsess catchment (Upper Franconia, Bavaria) Fuchs 
et al. (2010) have budgeted only 9% alluvial sediments 
and 33% catchment output. Here the output is nearly 
three times the amount of alluvial sediments. In the 
Geul River catchment (southern Netherlands) De Moor 
and Verstraeten (2007) calculated more than 80% of 
colluvium, and only 13% of alluvial sediments have 
been stored in the catchment since the High Middle 
Ages. During the time before, the main part of the sedi-
ments was exported out of the catchment. 

To sum up, the results provide evidence for much high-
er values concerning areal historic soil erosion and 
the formation of alluvial sediments in Central Euro-
pean Uplands than was realised until now. Therefore, 
most of the soil profiles in the cultural landscapes of 
Central Europe were truncated by several decimetres 
during historic and pre-historic periods.

7.  Conclusions

In the catchment of the Aar River, 48.8 mill. tons of 
loamy, downwards increasingly sandy or clayey over-
bank fines are stored in total. The loams are 1.5 to 
5.0 m thick, which is a very high value for a small catch-
ment of 312 km². Sometimes isolated gravel layers or 
small sand-filled streams within the loams could be 
observed. The anthropogenically triggered sedimen-
tation began in the lower middle and lower course auf 
the Aar River at the earliest during the Bronze Age. A 
small proportion may have been deposited even earlier, 
of natural origin. In the upper course, first sedimenta-
tion did not begin before 1000 AD, even though the 
Romans had already settled in this mountainous area. 
The strongest sedimentation intensity (55 % of the 
overbank fines in the whole catchment) was evidenced 

for Early Modern Times, triggered by deforestation in 
connection with the local iron industry. The calculated 
total amount of overbank fines correlates to an average 
soil erosion of 11 cm in the whole catchment.

As a result, the example from the Aar River demon-
strates that there were strong influences of historic 
man in the uplands of Central Europe with drastic 
consequences for the landscape.
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